Open Access
Subscription or Fee Access

### Is the Master Formula for the U-matrix Finally Found?

#### Abstract

In zero energy ontology U-matrix replaces S-matrix as the fundamental object characterizing the predictions of the theory. U-matrix is defined between zero energy states and its orthogonal rows define what I call M-matrices, which are analogous to thermal S-matrices of thermal QFTs. M-matrix defines the time-like entanglement coefficients between positive and negative energy parts of the zero energy state. M-matrices identifiable as hermitian square roots of density matrices. In this article it is shown that M-matrices form in a natural manner a generalization of Kac-Moody type algebra acting as symmetries of M-matrices and U-matrix and that the space of zero energy states has therefore Lie algebra structure so that quantum states act as their own symmetries. The generators of this algebra are multilocal with respect to partonic 2-surfaces just as Yangian algebras are multilocal with respect to points of Minkowski space and therefore define generalization of the Yangian algebra appearing in the Grassmannian twijstor approach to N = 4 SUSY.