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Abstract

Many physical constants related to quantized gravity, e.g., the Planck length, mass, curvature,
stress-energy, etc., are nonanalytic in G at G = 0, and thus have expansions in powers of G whose
terms are progressively more divergent with increasing order. Since the gravity field’s classical action
is inversely proportional to GG, the path integral for gravity-field quantum transition amplitudes shows
that these depend on G only through the product AG, and are nonanalytic in G at G = 0 for the same
reason that all quantum transition amplitudes are nonanalytic in & at A = 0, namely their standard
oscillatory essential singularity at the classical ‘limit’. Thus perturbation expansions in powers of
G of gravity-field transition amplitudes are also progressively more divergent with increasing order,
and hence unrenormalizable. While their perturbative treatment is impossible, the exceedingly small
value of hG makes the semiclassical treatment of these amplitudes extraordinarily accurate, indeed
to such an extent that purely classical treatment of the gravity field ought to always be entirely
adequate. It should therefore be fruitful to couple classical gravity to other fields which actually
need to be quantized: those fields’ ubiquitous, annoying ultraviolet divergences would thereupon
undergo drastic self-gravitational red shift, and thus be cut off.

Introduction

Gravity occupies a profoundly fundamental place in physical theory by virtue of its source being the
energy-momentum tensor, whose presence accompanies any physical phenomenon whatsoever. This
universality implies that the source of the gravitational field even includes a contribution from itself,
which is the origin of its nonlinearity. Gravity’s predominantly negative long-range field potential energy
response to its sources can enable it to overwhelm and suppress those source components that happen
to be sufficiently concentrated and strong, even plunging them into “black holes” in extreme cases, but
its fundamental coupling strength is smaller than that of the other known forces to a mind-boggling
degree: the mutual gravitational attraction between two even neutron-rich nuclei (e.g., tritons) is still
weaker than their mutual Coulomb repulsion by a staggering factor of over 10%.

As Einstein’s gravitational theory and the quantum theory of dynamics are both crowning achieve-
ments of twentieth-century theoretical physics, it is entirely natural to try to combine them. The mul-
titude of similarities between Einstein’s gravity theory and Maxwell’s electrodynamics, together with
the qualifiedly successful (at least after ‘renormalization’) quantized treatment of the latter in the ap-
proximation context of a perturbation expansion in powers of the coupling strength, strongly suggests
handling the quantization of gravity analogously, especially in view of the fact that its coupling strength
is even wastly weaker than that of electrodynamics. Unfortunately, however, as has been realized for
well over half a century [1], the perturbation expansions in powers of the gravitational coupling strength
G of transition amplitudes of the canonically quantized gravitational field yield infinities whose severity
increases progressively with order, which precludes ‘renormalization’. Since ‘renormalization’ consists of
a certain class of prescriptions that are imposed atop a perturbatively treated quantum field theory for
the express purpose of shunting aside unwelcome infinities that it has produced (“sweeping them under
the rug”, in Feynman’s blunt phrase), but fails to point to any physical mechanism which disallows their
existence, its inapplicability to canonically quantized gravity is obviously not of itself adequate reason
to conclude that that theory must be discarded—especially in light of the robustness of the twin pillars,
namely Einstein’s gravity and quantum dynamics, upon which it rests.
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That notwithstanding, it was promulgated as “pragmatically motivated” dogma in the late 1960’s that
all unrenormalizable quantum field theories were henceforth to be regarded as being “beyond the pale”
on the grounds that if the perturbation expansion for a quantum field theory was unuviable, it simply
was not conceivable that any practicable alternate means of satisfactorily extracting its results could
exist or be developed. This “pragmatic”, but obviously not physically based, dogma, which also directly
flouts Einstein’s admonition not to cravenly limit research efforts to “the thinnest part of the board”,
then drove a single-minded effort to create renormalizable theories at essentially any cost: Occam’s razor
and its companion guidelines of conservatism, continuity, and known empirical support for undertaking
modification of physical theory were upended as fields were abruptly swapped for strings, the four
dimensions of space-time were simply increased to “whatever it takes”, and fermionic Noether currents
which anticommute rather than causally commute at spacelike separations were ascribed with physical
existence—all done not to accommodate existing physical knowledge but simply in brainstorming support
of a headlong tunnel-vision effort to create theoretical structures whose perturbative infinities are “under
control” in a particular preconceived sense.

It was not inevitable, however, that the catastrophic failure of the perturbation expansion in powers of
G for canonically quantized gravity need have so abjectly contributed to the above-described departures
from the guidelines which have well served theoretical physics research for centuries. The keen sense of
frustration which arose from that failure ought to have been tempered by the realization that theories can
be qualitatively probed with simple, if somewhat blunt tools that at least have the virtue of being entirely
nonperturbative. One such rough tool is the time-honored one of dimensional analysis—this seems almost
made to order for the canonically quantized gravitational field with its highly suggestive “Planck trio” of
applicable constants, namely G, ¢, and A. It is well-known that from these universal constants Planck
entities having the dimensions of mass, length, and time are readily constructed, namely the Planck mass
\/hic/G, the Planck length /hG/c?, and the Planck time /AG/c5, which, in turn, are basic building
blocks of further Planck entities that have any dimension one might wish to nominate (with the excep-
tion of dimensionlessness). Such entities are of particular interest to us for extremely small values of G,
which accord with both G’s actual physical value and with the point G = 0 about which the disastrous
perturbation expansion of canonically quantized gravity is made. We are immediately struck by the fact
that all three of the basic Planck entities given above, notwithstanding that they are obviously perfectly
well-defined (indeed elementary), nevertheless have perturbation expansions in powers of G whose terms
become progressively more severely divergent with increasing order—which is precisely the same “per-
turbatively catastrophic” behavior that has for so many decades been regarded as the death knell of
gravity’s straightforward canonical quantization! It now becomes apparent that canonically quantized
gravity may have been prematurely written off all those decades ago on entirely inadequate grounds—any
otherwise well-defined quantity that, like the above three basic Planck entities, is nonanalytic in G at the
point G = 0, will normally have just such a “catastrophic” perturbation expansion in powers of G. There
are, indeed, many other physically interesting (and perfectly well-defined) Planck entities that also fall
precisely into this category, including, inter alia, the Planck curvature ¢3/(hG), Planck energy density
¢’ /(hG?), Planck acceleration \/c7/(hG), and Planck wave number \/c?/(hG). We now need to inquire
into why G = 0 is a point of nonanalyticity of so many physical entities which flow from canonically
quantized gravity (conceivably including, it now seems not implausible, its transition amplitudes).

Small G and the classical limit

We see that as G tends toward zero, the Planck wave number just mentioned increases without bound,
which at least suggests that G — 0 drives the canonical quantization of gravity toward its classical limit.
Furthermore, in line with what would be expected of a wave number marker for the classical limit, the
Planck wave number also increases without bound as A tends toward zero—in fact, the Planck wave
number depends on G through the product (hG). It is, of course, well-known that quantum theories
behave in an extremely nonsmooth asymptotic fashion as they are driven to their classical limit (e.g.,
when i — 0), so we now glimpse fragments of an argument as to why many physical entities which
flow from canonically quantized gravity might be expected to be nonanalytic in both & at h = 0 and in
G at G = 0. In order to present that argument in a clear, systematic way for this theory’s transition
amplitudes in particular, we shall first review the reasons why quantum transition amplitudes in general
are normally nonanalytic in A at A = 0. We shall also briefly discuss a path-integral-based stationary
phase asymptotic semiclassical expansion approach to quantum transition amplitudes which is valid as
h — 0. R

General quantum transition amplitudes such as (¢¢| exp(—iH (t2 — t1)/h)|1;) can be rewritten in
terms of the eigenspectrum of H as > g (Vs E) exp(—iE(ts — t1)/h)(E|Y;), and therefore will obviously
almost always be nonanalytic in h at h = 0. A systematic treatment of such transition amplitudes as h
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approaches their point of nonanalyticity at A = 0 can be developed from their path integral expression,

(| exp(—iH (t2 — t1) /B)|th;) =
/dn(h ¢f|Q2 /dn(h (au|vs) x

/ DL (), p(t)) | teltn, ta], alt) = qualts) = au} x
exp(i [ dt (6(t) - p(t) — H(a(t), p(t)))/h).

which again makes their nonanalyticity in h at h = 0 manifest. As A — 0, however, the pure
phase integrand of the path integration oscillates increasingly rapidly except in an increasingly small
neighborhood of the path which renders it stationary. This stationary path is readily seen to satisfy
q(t) = VpwH(a(t),p(t)) and p(t) = —VquH(a(t),p(t)), which are, of course, Hamilton’s classical
equations of motion, subject to the end constraints imposed on the paths integrated over, namely that
q(t1) = qi and q(t2) = q2. The full mathematical development of this sort of stationary phase approxi-
mation to an integral over a pure phase integrand which is driven by a parameter to oscillate increasingly
rapidly is well known to produce an asymptotic expansion of the integral in that parameter. To be sure,
this stationary phase asymptotic expansion technology is not normally presented in the context of path
or functional integrals, but all the needed concepts and theorems, including polynomials, derivatives, the
Taylor expansion, Gaussians, and analytic integration of the products of polynomials with Gaussians, are
readily extended from the mathematics of multivariate functions to that of functionals. This stationary
phase asymptotic expansion technique applied to the quantum path integral, with 2z — 0 being the driver
of the increasingly rapid pure phase integrand oscillations, provides the systematic semiclassical expan-
sion of quantum transition amplitudes—a methodology of considerable promise for strong interactions,
which has not yet been tapped. It is to be cautioned, however, that the approach may be a formidable
consumer of computational resources, as it, in principle, requires all the classical paths generated by
every possible pair of end constraints.
For particle dynamics, as it is treated above, the classical action functional is,

Ji2adt (a(t) - p(t) — H(q(t), p(t))).

For the gravitational field, however, it turns out that the classical action functional is inversely propor-
tional to G, i.e., it equals the constant factor (—c?/(16mw@)) times the curvature scalar integrated over
generally invariant space-time [2]. Therefore for the canonically quantized gravitational field, (167hG)/c?
may be expected to play a role analogous to that played by A alone in quantized dynamics generally.
Thus we may indeed expect canonically quantized gravitational field theory to be nonanalytic in G at
G =0, as well as in h at A = 0, and its perturbation expansion in powers of GG to be a disaster. However,
since (167hG)/c* is notable for its extreme smallness, we may also expect the stationary phase semiclas-
sical asymptotic expansion of canonically quantized gravitational field theory to produce extraordinarily
accurate results indeed. In fact, this approach may be expected to yield such good results that simply
resorting to the purely classical gravitational field ought to be entirely adequate.

Another way to appreciate the predominantly classical character of the canonically quantized grav-
itational field is to consider the detectability of individual gravitons. The extreme weakness of the
gravitational coupling strength G makes individual gravitons essentially undetectable unless they have
extraordinarily high energy. Any process capable of emitting such gravitons would almost certainly in-
volve extremely strong gravitational fields in the immediate vicinity of their region of emission, fields
which would tend to gravitationally red shift those very gravitons to lower energy. It thus might be
problematic for gravitons energetic enough to be individually detectable to actually be available. Fur-
thermore, the total phase space for a graviton to decay into two gravitons that both travel in its original
direction is nonvanishing (albeit for three or more gravitons it does vanish). This decay is suppressed
both by the weakness of G and by a d-wave orbital angular momentum barrier, but its rate should rise
strongly with energy, thus also depleting the availability of gravitons energetic enough to be individually
detectable. (Interestingly, two-photon decay of a photon is ruled out in spin 1 quantum electrodynamics
by Furry’s theorem.) Finally, the distinctly macroscopic magnitudes of the Planck mass (which at nearly
22 mcg is comparable to that of a small puntuation mark cut out of a glossy page), the Planck momentum
(which at over 23,000 g km/hr is comparable to that of a bullet), and the Planck energy (which at over
540 kWh would supply a household for many days) hardly suggest a significant need to take quantum
corrections to the gravitational field into account.

It is quite interesting that in the course of pondering the quantization of the gravitational field,
one is driven to the conclusion that this endeavor is largely unnecessary. Einstein even more fiercely
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opposed the quantization of gravity than he opposed the quantum theory generally—as fate would have it,
quantized gravity theory itself turns out to be disinclined to disagree with him to any significant extent.
The dominantly classical character of universal gravitation turns out to provide a deep validation of
the Copenhagen interpretation of quantum theory: in principle any ‘pure’ quantum state is necessarily
(albeit usually extremely weakly!) coupled to the universal gravitational field, which is effectively a
“classical observer” that must in due course bring about the “collapse” of its quantum coherence. What
a pity that Einstein never confronted the reverberating ironies implicit in this line of thought! (In actual
practice, of course, the vastly more strongly coupled electromagnetic field is very much more likely to
play this “quantum coherence collapsing” role, but electromagnetism is in principle neither universally
coupled nor necessarily dominantly classical.)

Dominantly classical gravity in a quantum world

This dominantly classical character of gravitation sorely needs, however, for the purposes of theoretical
physics, to be appropriately conjoined with the markedly quantum characteristics which so many other
physical phenomena, such as electromagnetism, can manifest. A straightforward formal approximation
technology for accomplishing this has been proposed by Boucher and Traschen [3], wherein a hybrid par-
tially quantized Hermitian density operator is taken to be merely a function of those phase-space variables
(e.g., the gravitational ones) which are to be left as unquantized c-numbers. The same hybridization
applies to the Hamiltonian and other dynamical variables of interest. The equation of motion of the
hybrid density then is taken to involve a natural hybrid commutator-cum-Poisson bracket of that density
with the hybrid Hamiltonian (the factors of the Poisson bracket part of this hybrid bracket must, of
course, be ordered so as to ensure the hybrid bracket’s Hermiticity). Albeit straightforward and natural,
this approach cannot be regarded as the realization of some manner of quantum/classical dynamical
‘subtheory’, because there is no guarantee that its hybrid density remains positive as time evolves, as
pointed out by Boucher and Traschen [3]. Therefore this approach definitely falls in the category of
being an approzimation technology with the characteristic property of being subject to manifest failure
if applied well beyond its appropriate scope. It is in fact impossible for classical degrees of freedom
to strictly maintain their quintessential inherent determinism once they are permitted to interact with
quantum degrees of freedom that are not bound by such determinism.

In a much less methodical vein, it is instructive to try to tease out in a rough, qualitative manner some
of the salient implications of the predominantly classical gravitational field for quantum phenomena. A
driving goal of high energy particle physics is to resolve natural phenomena at ever smaller spatial scales.
To resolve an object of extremely short length [, we need quanta of of momenta around %/l or larger to
be absorbed and then reemitted (i.e., scattered) by that object. As we suppose [ to have ever smaller
values, we may safely assume such quanta to be ultrarelativistic, i.e. photon-like. Upon the quantum’s
absorption, the object of length [ will have an energy of at least hic/l, which will generate a dimensionless
gravitational potential of around —hG/(c31?) at its extremities, and this, in turn, would tend to reduce
the momentum of the reemitted quantum by the factor (1—(hG)/(c31?)) because of gravitational redshift.
(We have used very crude Newtonian-like gravitational guesstimates here—these do not include nonstatic
corrections nor take account of the needed self-consistency iterations.) The thrust of this crude exercise
is clearly that a short enough length will be very difficult to resolve, as the requisitely high momentum
quantum will, after absorption into the object of this length, tend to redshift its reemitted counterpart
toward extinction. So the very means of resolving a small enough region has the side effect of redshifting
itself (upon reemission) toward nonexistence—the necessarily energetic probe drives its tiny target in
the direction of becoming an invisible ‘black hole’. The above expressions strongly suggest that this
effect will indeed ‘bite’ when the target length [ is significantly less than y/hG/c3, the Planck length.
Furthermore, if it is not possible to resolve length intervals significantly smaller than the Planck length,
it is rather clear that ‘stopwatches’ which reliably record time intervals significantly shorter than the
Planck time \/hG/c® cannot be constructed either. Thus we would expect space-time below the Planck
scale to be not so much a ‘quantum foam’ as intractably opaque. A less crude, more detailed exposition
of this argument is to be found in Ng and van Dam [4].

In many quantum field theories, such as quantum electrodynamics, the presence of virtual particles
of arbitrarily large energy can be a source of mathematical divergences known as the ‘ultraviolet catas-
trophe’. A virtual particle of very high energy E, however, can only exist for a very short time of order
h/E before it must be reabsorbed. Hence its evanescent presence will have been confined to a region
whose length is around hc/E. Again resorting to very crude Newtonian-like gravitational guesstima-
tion, we obtain that it will have given rise to an average dimensionless gravitational potential of around
—GE?/(3kc®) in that region, which roughly reduces its energy from E to E(1 —GE?/(3hc?)). We would
therefore expect virtual particle energies E to be limited to being not greatly larger than the Planck
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energy \/hc® /G, or else the virtual particle tends to disappear entirely into a black hole of its own mak-
ing. This gravitational limit to virtual particle energies in turn yields a gratifying natural cutoff for the
‘ultraviolet catastrophe’ divergences—the correctness of the basic thrust of this universal natural cutoff
idea for the ‘ultraviolet catastrophe’ divergences has recently received some detailed support in the case
of quantized scalar fields via a model wherein each virtual scalar particle is subjected to the gravitational
fields produced by its virtual companions [5]. Crudely inserting such a Planck-scale cutoff into the diver-
gent electromagnetic correction to the electron’s bare mass in QED yields a result roughly comparable
to the bare mass itself. For a charged spin 0 particle, however, the electromagnetic mass contribution
would be within about an order of magnitude of the Planck mass, independent of the particle’s bare
mass. Perhaps not so coincidentally, the known charged spin 0 particles are all believed to be composed
of charged spin 1 particles (i.e., quarks). In contrast, the divergent apparent corrections to the electron’s
charge must be purely artifacts of the unphysical ‘ultraviolet catastrophe’, since even virtual processes
are just as formally constrained to conserve charge in QED as they are to respect gauge invariance.
Gauge noninvariant infinities in QED are recognized as unphysical artifacts that need to be subtracted
out, so charge nonconserving infinities must be handled likewise, but unfortunately they were enshrined
very early on as infinite ‘charge renormalizations’ in flawed analogy with “effective charge reductions”
within polarizable mediaf| Once classical gravitation and its consequent virtual particle energy cutoff
have been properly incorporated into QED such that charge conservation continues to be respected, there
can be no alternative but for infinite ‘charge renormalizations’ to thereupon vanish identically, which is
precisely what calculations confirm [6].

Conclusion

The approaches of Refs. [5] and [6] to the approximate incorporation of classical gravitation into quantum
field theory fall short of being physically fully systematic: the approach of Ref. [5] fails to include the self-
gravitational phenomenon, crudely described above, which affects a virtual particle that is sufficiently
far off its mass shell, while the approach of Ref. [0] is very dependent on a stress-energy related technical
characteristic that is peculiar to photon virtual-dissociation Feynman diagrams.

The hybrid density operator approach of Boucher and Traschen [3] would seem to hold out the
best hope for systematically taking into account approximate classical gravitational effects that can be
spontaneously provoked by quantized fields. However, since the Feynman-diagram approach to quantized
fields was not developed in the formal context of the density operator, the formal calculational basis of
quantum field theory in this context must be worked out. In partial compensation for this onerous task
it may well not be necessary that every contribution to transition amplitudes be expressed in manifestly
Lorentz invariant form in light of the fact that classical gravity seems to be very effective in eliminating
ultraviolet divergences wherever and however they occur |5, [6]. But in addition to this welcome removal
of ultraviolet divergences, taking systematic account of classical self-gravitational effects will as well
generate a very unwelcome myriad of other gravitational corrections that are completely negligible—an
at least semiautomatic way to avoid the labor of calculating these without distorting gravity’s effect
on the ultraviolet divergences themselves will almost certainly need to be developed. Thus some very
difficult tasks will have to be addressed before classical gravity’s role in eliminating ultraviolet divergences
from quantum field theories can be elucidated in physically systematic fashion.
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