Article

A New Version of Bishop Frame and Application to Spherical Images of Spacelike Curve in E³₁ Minkowski 3-Space

Süha Yılmaz¹

Dokuz Eylül University, Buca Educational Faculty, 35150, Buca-Izmir, Turkey.

Abstract

In this work, I introduce a new version of Bishop frame using a common vector field as binormal vector field of a regular curve and call this frame as "Type-2 Bishop frame in $E_1^{3"}$. Thereafter, by translating type-2 Bishop frame vectors to O the center of Lorentzian sphere of three-dimensional Minkowski space, I introduce new spherical images and call them as type-2 Bishop spherical images in E_1^3 . Serret-Frenet apparatus of these new spherical images are obtained in terms of base curves's type-2 Bishop invariants. Additionally, I express some interesting theorems and illustrate one example of our main results.

Keywords: Spacelike curve, spherical image, Minkowski space, Bishop frame, general helix, Bertrand mate.

1 Introduction

Bishop frame, which is also called alternative or parallel frame of the curves, was introduced by L.R:Bishop in 1975 by means of parallel vector fields. Recently, many research papers related to this concept have been treated in Minkowski space, see [1,2,3,7,8]. And recently, this special frame is extended to study of canal and tubular surfaces, we refer to [7].

In this work, using common vector field as the binormal vector of Serret-Frenet frame, I introduce a new version of the Bishop frame in E_1^3 . I call it is "Type-2 Bishop frame" of regular curves. Thereafter, translating new frames vector fields to the center of unit sphere, I obtain new spherical images. We call them as "Type-2 Bishop Spherical Image" of regular curves.

2 Preliminaries

The Minkowski three dimensional space E_1^3 is a real vector space \mathbb{R}^3 endowed with the standard flat Lorentzian metric given by $\langle , \rangle_L = -dx_1^2 + dx_2^2 + dx_3^2$ where (x_1, x_2, x_3) is rectangular coordinate system of E_1^3 . Since g is an indefinite metric. Let $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ be arbitrary an vectors in E_1^3 , the Lorentzian cross product of u and v defined by

$$u \times v = -\det \begin{bmatrix} -i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$

¹Correspondence: E-mail: suha.yilmaz@deu.edu.tr

Recall that a vector $v \in E_1^3$ can have one of three Lorentzian characters: it can be spacelike if g(v,v) > 0 or v = 0; timelike if g(v,v) < 0 and null(lightlike) if g(v,v) = 0 for $v \neq 0$. Similarly, an arbitrary curve $\delta = \delta(s)$ in E_1^3 can locally be spacelike, timelike or null (lightlike) if all of its velocity vector δ' are respectively spacelike, timelike, or null (lightlike), for every $s \in I \subset \mathbb{R}$. The pseudo-norm of an arbitrary vector $a \in E_1^3$ is given by $||a|| = \sqrt{|g(a, a)|}$. The curve $\delta = \delta(s)$ is called a unit speed curve if velocity vector δ' is unit i.e., $||\delta'|| = 1$. For vectors $v, w \in E_1^3$ it is said to be orthogonal if and only if g(v, w) = 0. Denote by $\{T, N, B\}$ the moving Serret-Frenet frame along the curve $\delta = \delta(s)$ in the space E_1^3 .

The Lorentzian sphere S_1^2 of radius r > 0 and with the center in the origin of the space E_1^3 is defined by $S_1^2(r) = \{p = (p_1, p_2, p_3) \in E_1^3 : g(p, p) = r^2\}$.

Proposition 2.1.1: Let two regular curves be α and β in E_1^3 . $\{T, N, B\}$ and $\{T^*, N^*, B^*\}$ are Frenet frames of α and β , respectively. If the principal normal vectors are linearly dependent, i.e. $N = \lambda N^*$ ($\lambda \in \mathbb{R}$), then α and β called Bertrand mates.

Proposition 2.1.2: Let two regular curves be α and β in E_1^3 . $\{T, N, B\}$ and $\{T^*, N^*, B^*\}$ are Frenet frames of α and β , respectively. If the tangent vectors of these curves are perpendicular to each other, i.e $\langle T, T^* \rangle = 0$, then α is involute of β .

Proposition 2.1.3: Let $\varphi = \varphi(s)$ and $\varphi^* = \varphi^*(s)$ be simple closed curves in E_1^3 . These curves will be denoted by C. The normal plane at every point P on the curve meets the curve at a single point Q other than P we call the point Q the opposite point of P. We consider this curves having parallel tangents T and T^* opposite directions at opposite points φ and φ^* of the curve, then φ and φ^* curves called constant breadth, see [9].

3 Type-2 Bishop Frame of a Regular Curve in E_1^3

Theorem 3.1.1: Let $\alpha = \alpha(s)$ be spacelike curve with a spacelike principal normal unit speed. If $\{\Omega_1, \Omega_2, B\}$ is adapted frame, then we have

$$\begin{bmatrix} \Omega_1' \\ \Omega_2' \\ B' \end{bmatrix} = \begin{bmatrix} 0 & 0 & \xi_1 \\ 0 & 0 & -\xi_2 \\ -\xi_1 & -\xi_2 & 0 \end{bmatrix} \cdot \begin{bmatrix} \Omega_1 \\ \Omega_2 \\ B \end{bmatrix}$$
(3.1.1)

Proof: Let investigate "Type-2 Bishop Frame in E_1^{3} " relation with Serret-Frenet frame, where $g(\Omega_1, \Omega_1) = g(\Omega_2, \Omega_2) = 1$, g(B, B) = -1, and $g(\Omega_1, \Omega_2) = g(\Omega_1, B) = g(\Omega_2, B) = 0$. If Ω_1, Ω_2 are spacelike vectors but B timelike vector then we can write

$$\Omega_{1}^{'} = a_{11}\Omega_{1} + a_{12}\Omega_{2} + a_{13}B
\Omega_{2}^{'} = a_{21}\Omega_{1} + a_{22}\Omega_{2} + a_{23}B
B^{'} = a_{31}\Omega_{1} + a_{32}\Omega_{2} + a_{33}B$$
(3.1.2)

If we take inner product of equations (3.1.2) according to $\{\Omega_1, \Omega_2, B\}$ respectively, we find $a_{11} = 0$, $a_{12} = \langle \Omega'_1, \Omega_2 \rangle$, $a_{13} = -\langle \Omega'_1, B \rangle$, $a_{21} = \langle \Omega'_2, \Omega_1 \rangle$, $a_{22} = 0$, $a_{23} = -\langle \Omega'_2, B \rangle$, $a_{31} = \langle \Omega_1, B' \rangle = -a_{13}$, $a_{32} = \langle \Omega_2, B' \rangle = a_{23}$, $a_{33} = 0$. From above equations the Bishop frame has

$$\begin{bmatrix} \Omega_1' \\ \Omega_2' \\ B' \end{bmatrix} = \begin{bmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & a_{23} & 0 \end{bmatrix} \cdot \begin{bmatrix} \Omega_1 \\ \Omega_2 \\ B \end{bmatrix}$$

Considering the obtained frame, $a_{12} = 0$, $a_{13} = \xi_1$, $a_{23} = -\xi_2$. We have type-2 Bishop frame in E_1^3 .

$$\begin{bmatrix} \Omega_1' \\ \Omega_2' \\ B' \end{bmatrix} = \begin{bmatrix} 0 & 0 & \xi_1 \\ 0 & 0 & -\xi_2 \\ -\xi_1 & -\xi_2 & 0 \end{bmatrix} \cdot \begin{bmatrix} \Omega_1 \\ \Omega_2 \\ B \end{bmatrix}$$
(3.1.3)

Thus we have equation (3.1.3) or shortly X' = AX. Morever A is semi-skew matrix where ξ_1 first curvature and ξ_2 called second curvature of the curve, there the curvatures are defined by

$$\xi_1 = - < \Omega_1^{\scriptscriptstyle \rm I}, B>, \ \ \xi_2 = < \Omega_2^{\scriptscriptstyle \rm I}, B>.$$

Theorem 3.1.2: Let $\{T, N, B\}$ and $\{\Omega_1, \Omega_2, B\}$ be Frenet ve Bishop frames, respectively. There exists a relation between them as

$$\begin{bmatrix} T\\N\\B \end{bmatrix} = \begin{bmatrix} \sinh\theta(s) & \cosh\theta(s) & 0\\ \cosh\theta(s) & \sinh\theta(s) & 0\\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \Omega_1\\\Omega_2\\B \end{bmatrix}$$
(3.1.4)

where θ is the angle between the vectors N and Ω_1 .

Proof: We write the tangent vector according to frame $\{\Omega_1, \Omega_2, B\}$ as

$$T = \sinh \theta(s)\Omega_1 + \cosh \theta(s)\Omega_2$$

and differentiate with respect to s

$$T' = \kappa N = \theta'(s) \left[\cosh \theta(s) \Omega_1 + \sinh \theta(s) \Omega_2 \right] + \\ \sinh \theta(s) \Omega'_1 + \cosh \theta(s) \Omega'_2$$
(3.1.3)

Substituting $\Omega'_1 = \xi_1 B$ and $\Omega'_2 = -\xi_2 B$ to equation (3.3), we get

$$\begin{split} \kappa N = & \theta^{\scriptscriptstyle |}(s) \left[\cosh \theta(s) \Omega_1 + \sinh \theta(s) \Omega_2\right] \\ & + \sinh \theta(s) \Omega_1 - \cosh \theta(s) \Omega_2 \end{split}$$

From equation (3.1.4) we get $\theta(s) = \operatorname{Arg} \tanh \frac{\xi_2}{\xi_1}$, $\theta'(s) = \kappa(s)$, $N = \cosh \theta(s)\Omega_1 + \sinh \theta(s)\Omega_2$, and

$$\begin{bmatrix} T\\N\\B \end{bmatrix} = \begin{bmatrix} \sinh\theta(s) & \cosh\theta(s) & 0\\\cosh\theta(s) & \sinh\theta(s) & 0\\0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \Omega_1\\\Omega_2\\B \end{bmatrix}$$
(3.1.4)

Since there is a solition for θ satisfing any initial condition, this show that locally relatively parallel normal fields exist. Besides equation (3.1.2) can also written as

$$B' = \tau N = -\xi_1 \Omega_1 + \xi_2 \Omega_2$$

Taking the norm of both sides, we have

$$\tau = \sqrt{\left|\xi_2^2 - \xi_1^2\right|} \tag{3.1.2}$$

ISSN: 2153-8301

Prespacetime Journal Published by QuantumDream, Inc.

www.prespacetime.com

$$1 = \sqrt{\left| \left(\frac{\xi_1}{\tau}\right)^2 - \left(\frac{\xi_2}{\tau}\right)^2 \right|} \tag{3.1.5}$$

and so by (3.1.5), we may express

 $\{ \xi_1 = \tau(s) \cosh \theta(s), \quad \xi_2 = \tau(s) \sinh \theta(s) \}$

The frame $\{\Omega_1, \Omega_2, B\}$ is properly oriented, and τ and $\theta(s) = {}^s_0 \kappa(s) ds$ are polar coordinates for the curve $\alpha = \alpha(s)$. We shall call the set $\{\Omega_1, \Omega_2, B, \xi_1, \xi_2\}$ as type-2 Bishop invariants of the curve $\alpha = \alpha(s)$ in E_1^3 .

4 New Spherical Images of a Regular Curve

Let $\alpha = \alpha(s)$ be a regular curve in E_1^3 . If we translate type-2 Bishop frame vectors to the center O of Lorentzian sphere of three-dimensional Minkowski space, we introduce new spherical images in E_1^3 .

4.1 Ω_1 Bishop Spherical Image

Definition 4.1.1: Let $\alpha = \alpha(s)$ be a regular spacelike curve in E_1^3 . If we translate of the first vector field of type-2 Bishop frame to the center O of the unit sphere S_1^2 , we obtain a spherical image $\varphi = \varphi(s_{\varphi})$. This curve is called Ω_1 Bishop spherical image or indicatrix of the curve $\alpha = \alpha(s)$.

Let $\varphi = \varphi(s_{\varphi})$ be Ω_1 Bishop spherical image of a regular curve $\alpha = \alpha(s)$. We shall investigate relations among type-2 Bishop and Serret-Frenet invariants. First, we differentiate

$$\varphi' = \frac{d\varphi}{ds_{\varphi}} \cdot \frac{ds_{\varphi}}{ds} = \xi_1 B.$$

Here, we shall denote differentiation according to s by a dash, and differentiation according to s_{φ} by a dot. Taking the norm both sides the equation above, we have

$$T_{\varphi} = B, \qquad \frac{ds_{\varphi}}{ds} = \xi_1 \tag{4.1.1}$$

we differentiate $(4.1.1)_1$ as

$$T_{\varphi}^{\scriptscriptstyle i} = T_{\varphi} \frac{ds_{\varphi}}{ds} = -(\xi_1 \Omega_1 + \xi_2 \Omega_2)$$

So, we have

$$\dot{T}_{\varphi} = -(\Omega_1 + \frac{\xi_2}{\xi_1}\Omega_2).$$

Since, we have the first curvature and principal normal of φ

$$\kappa_{\varphi} = \left\| \overset{\cdot}{T}_{\varphi} \right\| = \sqrt{\left| \left(\frac{\xi_2}{\xi_1} \right)^2 - 1 \right|}, \qquad N_{\varphi} = \frac{-1}{\kappa_{\varphi}} (\Omega_1 - \frac{\xi_2}{\xi_1} \Omega_2)$$
(4.1.2)

Cross product of $T_{\varphi} \times N_{\varphi}$ gives us the binormal vector field of Ω_1 Bishop spherical image of $\alpha = \alpha(s)$

$$B_{\varphi} = \frac{1}{\kappa_{\varphi}} \left(-\frac{\xi_2}{\xi_1} \Omega_1 + \Omega_2 \right)$$
 (4.1.3)

www.prespacetime.com

Using the formula of the torsion, we write a relation

$$\tau_{\varphi} = \frac{\left(\xi_{1}\right)^{7} \cdot \left(\frac{\xi_{2}}{\xi_{1}}\right)^{'}}{\left|\xi_{2}^{2} - \xi_{1}^{2}\right|} \tag{4.1.4}$$

4.2 Ω_2 Bishop Spherical Image

Definition 4.2.1: Let $\alpha = \alpha(s)$ be a regular spacelike curve in E_1^3 . If we translate of the second vector field of type-2 Bishop frame to the center of the unit sphere S_1^2 , we obtain a spherical image $\beta = \beta(s_\beta)$. This curve is called Ω_2 Bishop spherical image or indicatrix of the curve $\alpha = \alpha(s)$.

Let $\beta = \beta(s_{\beta})$ be Ω_2 Bishop spherical image of the regular curve $\alpha = \alpha(s)$. We can write that

$$\beta' = \frac{d\beta}{ds_{\beta}} \cdot \frac{ds_{\beta}}{ds} = -\xi_2 B.$$

Similar to Ω_2 Bishop spherical image, one can have

$$T_{\beta} = -B, \qquad \frac{ds_{\beta}}{ds} = \xi_2 \tag{4.2.1}$$

So, by differentiating of the formula $(4.2.1)_1$, we get

$$T_{\beta}^{\scriptscriptstyle |}=\overset{\cdot}{T}_{\beta}\frac{ds_{\beta}}{ds}=\xi_1\Omega_1+\xi_2\Omega_2$$

or in other words

$$\dot{T}_{\beta} = \frac{\xi_1}{\xi_2} \Omega_1 + \Omega_2$$

Since, we express

$$\kappa_{\beta} = \left\| \dot{T}_{\beta} \right\| = \sqrt{\left| 1 - \left(\frac{\xi_1}{\xi_2}\right)^2 \right|}, \qquad N_{\beta} = \frac{1}{\kappa_{\beta}} \left(\frac{\xi_1}{\xi_2} \Omega_1 + \Omega_2\right)$$
(4.2.2)

Cross product of $T_{\varphi} \times N_{\varphi}$ gives us

$$B_{\beta} = \frac{1}{\kappa_{\beta}} \left(\Omega_1 + \frac{\xi_1}{\xi_2} \Omega_2\right) \tag{4.2.3}$$

By the formula of the torsion, we have

$$\tau_{\beta} = \frac{\left(\xi_{2}\right)^{7} \cdot \left(\frac{\xi_{1}}{\xi_{2}}\right)^{'}}{\left|\xi_{2}^{2} - \xi_{1}^{2}\right|}$$
(4.2.4)

Binormal Bishop Spherical Image 4.3

Definition 4.3.1: Let $\alpha = \alpha(s)$ be a regular spacelike curve in E_1^3 . If we translate of the third vector field of type-2 Bishop frame to the center O of the unit sphere S_1^2 , we obtain a spherical image $\phi = \phi(s_{\phi})$. This curve is called Binormal Bishop spherical image or indicatrix of the curve $\alpha = \alpha(s).$

Let $\phi = \phi(s_{\phi})$ be Binormal Bishop spherical image of a regular spacelike curve $\alpha = \alpha(s)$. One can differentiate of ϕ with respect to s:

$$\phi^{\scriptscriptstyle |} = \frac{d\phi}{ds_\phi} \cdot \frac{ds_\phi}{ds} = -(\xi_1 \Omega_1 + \xi_2 \Omega_2).$$

In terms of type-2 Bishop frame vector fields, we have tangent vector of the spherical image as follows

$$T_{\phi} = \frac{-(\xi_1 \Omega_1 + \xi_2 \Omega_2)}{\sqrt{|\xi_2^2 - \xi_1^2|}}, \qquad \frac{ds_{\phi}}{ds} = \sqrt{|\xi_2^2 - \xi_1^2|}$$
(4.3.1)

In order to determine first curvature of ϕ , we write

$$T_{\phi} = P'(s)\Omega_1 + Q'(s)\Omega_2 + [P(s)\xi_1 - Q(s)\xi_2]B$$

where $P(s) = \frac{\xi_1}{\sqrt{|\xi_2^2 - \xi_1^2|}}$ and $Q(s) = \frac{\xi_2}{\sqrt{|\xi_2^2 - \xi_1|}}$.

Since, we immediately arrive at

$$\kappa_{\phi} = \left\| \dot{T}_{\phi} \right\| = \sqrt{\left| (P^{\text{\tiny I}}(s))^2 + (Q^{\text{\tiny I}}(s))^2 - [P(s)\xi_1 - Q(s)\xi_2)]^2 \right|}$$
(4.3.2)

Therefore, we have the principal normal

$$N_{\phi} = \frac{-1}{\kappa_{\phi}} \{ P^{\dagger}(s)\Omega_1 + Q^{\dagger}(s)\Omega_2 + [P(s)\xi_1 - Q(s)\xi_2]B \}$$
(4.3.3)

By the cross product of $T_{\phi} \times N_{\phi}$, we obtain the binormal vector field

$$B_{\phi} = \frac{1}{\kappa_{\phi} \cdot \sqrt{\left|\xi_{2}^{2} - \xi_{1}^{2}\right|}} \{ [Q(s)\xi_{2} - P(s)\xi_{1}] \Omega_{1} + [P(s)\xi_{1} - Q(s)\xi_{2}] \Omega_{2} - [Q'(s)\xi_{1} + P'(s)\xi_{2}] B \}$$

$$(4.3.4)$$

where $P(s) = \frac{\xi_1}{\sqrt{|\xi_2^2 - \xi_1^2|}}$ and $Q(s) = \frac{\xi_2}{\sqrt{|\xi_2^2 - \xi_1^2|}}$.

Prespacetime Journal Published by QuantumDream, Inc. www.prespacetime.com

By means of obtained equations, we express the torsion of the Binormal Bishop spherical image

$$\tau_{\phi} = \frac{1}{\kappa_{\phi}^{2}} \{ \xi_{1} [\xi_{1}\xi_{1}^{'}\xi_{2}^{'} + \xi_{2}\xi_{2}^{''} + \xi_{2}^{'}(\xi_{1}^{2} + \xi_{2}^{2})^{'} \\ - (\xi_{1}^{2} + \xi_{2}^{2})(\xi_{2}^{''} + (\xi_{1}^{2} + \xi_{2}^{2})\xi_{2})] \\ + \xi_{2} [(\xi_{1}^{2} + \xi_{2}^{2})(\xi_{1}^{''} + (\xi_{1}^{2} + \xi_{2}^{2})\xi_{1}) \\ - \xi_{1}\xi_{1}^{''} - \xi_{1}^{'}\xi_{2}\xi_{2}^{'} - \xi_{1}^{'}((\xi_{1}^{2} + \xi_{2}^{2})] \}$$

$$(4.3.5)$$

Consequently, we determined Serret-Frenet invariants of the Binormal Bishop spherical image according to type-2 Bishop invariants in E_1^3 .

5 Main Results

Theorem 5.1.1: Let $\alpha = \alpha(s)$ be a regular spacelike curve in 3-dimensional Minkowski space. Both of Ω_1 and Ω_2 spherical image of α are Bertrand mates.

Proof: Let us denote the principal normal vectors of Ω_1 and Ω_2 and binormal spherical images as N_{ϕ}, N_{β} and N_{ϕ} respectively.

The principal normal vectors are given in $(4.1.2)_2$, $(4.2.2)_2$, (4.3.3)

$$N_{\varphi} = \frac{1}{\kappa_{\varphi}} (\Omega_1 - \frac{\xi_2}{\xi_1} \Omega_2), \qquad N_{\beta} = \frac{1}{\kappa_{\beta}} (-\frac{\xi_1}{\xi_2} \Omega_1 + \Omega_2)$$
$$N_{\phi} = \frac{1}{\kappa_{\phi}} \left\{ \left(\frac{-P(s)P^{\scriptscriptstyle i}(s)}{\xi_1} \right) \Omega_1 - \left(\frac{Q(s)Q^{\scriptscriptstyle i}(s)}{\xi_2} \right) \Omega_2 + \left[Q(s)\xi_2 - P(s)\xi_1 \right] \right\}$$

where

$$P(s) = \frac{-\xi_1}{\sqrt{|\xi_1^2 - \xi_2^2|}} \quad Q(s) = \frac{\xi_2}{\sqrt{|\xi_1^2 - \xi_2^2|}}$$
$$\kappa_{\varphi} = \sqrt{\left|1 - \left(\frac{\xi_2}{\xi_1}\right)^2\right|} \quad \kappa_{\beta} = \sqrt{\left|\left(\frac{\xi_1}{\xi_2}\right)^2 - 1\right|}$$
$$\kappa_{\phi} = \sqrt{\left(\frac{P(s)P'(s)}{\xi_1}\right)^2 - \left(\frac{Q(s)Q'(s)}{\xi_2}\right)^2 + [Q(s)\xi_2 - P(s)\xi_1)]^2}$$

By putting curvatures κ_{φ} and κ_{β} of ξ_1 and ξ_2 spherical images, we have the principal normal vectors as

$$N_{\varphi} = \frac{1}{\kappa_{\varphi}} (\Omega_1 - \frac{\xi_2}{\xi_1} \Omega_2), \qquad N_{\beta} = \frac{1}{\kappa_{\beta}} (-\frac{\xi_1}{\xi_2} \Omega_1 + \Omega_2)$$

It can be seen $N_{\varphi} = -N_{\beta}$, so the principal normal vectors of Ω_1 and Ω_2 spherical images are linearly dependent. As a result of this from proposition **2.1.1**, they are Bertrand mates.

Theorem 5.1.2: Let $\alpha = \alpha(s)$ be a regular curve in 3-dimensional Minkowski space. Both of Ω_1 , Ω_2 and *B* spherical image of α . Both of Ω_1 and Ω_2 spherical images of α are spherical involutes for binormal spherical image of α .

Proof: Let us denote the tangent vectors of Ω_1 and Ω_2 spherical images as T_{φ} , T_{β} and T_{ϕ} respectively. These tangent vectors are given in $(4.1.1)_1, (4.2.1)_1$ and $(4.3.3)_1$. If the inner products are calculated, we get

$$< T_{\varphi}, T_{\phi} >= 0, \qquad < T_{\beta}, T_{\phi} >= 0$$

The tangent vectors of Ω_1 and Ω_2 spherical images are perpendicular to tangent vectors of binormal spherical images. So the proof is completed from proposition **2.1.2**.

Theorem 5.1.3: Let $\alpha = \alpha(s)$ be a regular curve in 3-dimensional Minkowski space. Both of Ω_1 , Ω_2 and *B* spherical image of α . Binormal vector of Ω_1 are orthogonal to normal vector Ω_2 .

Proof: Let us denote the binormal vectors of Ω_1 and principal normal vector of Ω_2 , B_{φ} and N_{β} respectively. From (4.1.3), (4.2.2)₂ this vectors are given

$$B_{\varphi} = \frac{1}{\kappa_{\varphi}} \left(-\frac{\xi_2}{\xi_1} \Omega_1 + \Omega_2\right), \qquad N_{\beta} = \frac{1}{\kappa_{\beta}} \left(-\frac{\xi_1}{\xi_2} \Omega_1 + \Omega_2\right)$$

If the Lorentzian inner product of B_{φ} and N_{β} are calculated, we get $\langle B_{\varphi}, N_{\beta} \rangle = 0$. It can be seen that, Binormal vector of Ω_1 and normal vector Ω_2 are perpendicular.

Theorem 5.1.4: Let $\alpha = \alpha(s)$ be a regular curve in 3-dimensional Minkowski space. Both of Ω_1 and Ω_2 spherical images curves of α are constant breadth.

Proof: Let us denote the tangent vectors of Ω_1 and Ω_2 spherical images as T_{φ} , T_{β} and T_{ϕ} respectively. These tangent vectors are given in $(4.1.1)_1, (4.2.1)_1$ and $(4.3.3)_1$.

$$T_{\varphi} = -B, \quad T_{\beta} = B, \quad T_{\phi} = \frac{-\xi_1 \Omega_1 + \xi_2 \Omega_2}{\sqrt{|\xi_1^2 - \xi_2^2|}}$$

It can be seen that $T_{\varphi} = -T_{\beta}$. From proposition **2.1.3** they are constant breadth.

6 Example

In this section, we illustrate one example of Frenet frame and new spherical images in E_1^3 .

Example 6.1.2: Next, let us consider the following unit speed curve w(s) of E_1^3 by $w = w(s) = (s, \sqrt{2} \ln(\operatorname{sech}(s)), \sqrt{2} \arctan(\sinh(s)))$. It is rendered in figure 1.

And this curves's curvature functions are expressed as in E_1^3

 $\{ \kappa(s) = \sqrt{2sech(s)}, \quad \tau(s) = sech(s).$

The Serret-Frenet frame of the w = w(s) may be written by the aid Mathematical program as follows

$$T = (1, \sqrt{2} \tanh(s), \sqrt{2} \operatorname{sec} h(s)),$$

$$N = (0, \operatorname{sech}(s), - \tanh(s)),$$

$$B = (\sqrt{2}, - \tanh(s), \operatorname{sec} h(s)),$$

$$\theta(s) = \sqrt{2}_0^s \operatorname{sec} h(s) ds = \sqrt{2} \arctan(\sinh(s))$$

Using transformation matrix equation (3.1.4) we get w = w(s) and tangent, normal, binormal spherical images of unit speed curve with respect to Serret-Frenet frame. respectively Fig 1,2a,2b, 2c.we have type-2 Bishop spherical images of the unit speed curve w = w(s), see figures 3a,3b,3c

$$\Omega_{1} = \frac{1}{\sinh^{2}\theta + \cosh^{2}\theta} (-\sinh\theta, -\sqrt{2} \tanh\theta \sec h\theta - \cosh\theta \sec h\theta)$$
$$, -\sqrt{2} \sinh\theta \sec h\theta - \cosh\theta \tanh\theta)$$
$$\Omega_{2} = \frac{1}{\sinh^{2}\theta + \cosh^{2}\theta} (\cosh\theta, \sqrt{2} \tanh\theta \cosh\theta - \sinh\theta \sec h\theta)$$
$$, \sqrt{2} \cosh\theta \sec h\theta - \sinh\theta \sec h\theta$$
$$, \sqrt{2} \cosh\theta \sec h\theta - \sinh\theta \tanh\theta)$$
$$B = (\sqrt{2}, -\tanh(s), \sec h(s))$$

Fig.1

Fig.2a

Fig.2b

Fig.2c

Fig.3a

Fig.3b

Fig.3c

REFERENCES

[1] A.T. Ali, R. Lopez, Timelike B^2 -slant helices in Minkowski space E_1^4 , Arch. Math. (Brno) 46, (2010), 39-46.

[2] A.T. Ali, M. Turgut, Position vector of a time-like slant helix in Minkowski 3-space, J.Math. Anal. Appl. 365, (2010), 559-569.

[3] B.Bükcü, M.K. Karacan The Bishop Darboux rotation axis of the spacelike curve in Minkowski 3-space, Ege University, J. Fac. Sci. 3 (1), (2007), 1-5.

[4] L.R Bishop, There is more than one way to frame a curve, Amer. Math. Monthly 82 (3),(1975), 246-251.

[5] M Barros, A Ferrandez, P Lucas, MA Merono, General helices in three dimensional Lorentzian space forms, Rocky Mountain J. Math. 31, (2001),373-388.

[6] M. Fujivara, On space curves of Constant Breadtl, Tohoku Math.J.5 (1914), 179-184.

[7] M.K. Karacan, B.Bükcü, An alternative moving frame for tubular surface around the spacelike curve with a spacelike binormal in Minkowski 3-space, Math. Morav. 11, (2007), 73-80.

[8] M. Petroviç- Torgasev, E. Sucuroviç, Some Characterizations of the spacelike, the timelike and Null Curves on the Pseudohyperbolic space H_0^2 in E_1^3 Kraguevac J. Math. 22, (2000), 71-82.

[9] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turkish J. math. 28 (2), (2004), 531-537.

[10] S. Yılmaz, M. Turgut, A new version of Bishop Frame and An Application to Spherical Images, Journal of Mathematical Analysis and Applications. 371, (2010), 764-776.