A New Version of Bishop Frame and Application to Spherical Images of Spacelike Curve in E_{1}^{3} Minkowski 3-Space

Süha Yılmaz ${ }^{1}$
Dokuz Eylül University, Buca Educational Faculty, 35150, Buca-Izmir, Turkey.

Abstract

In this work, I introduce a new version of Bishop frame using a common vector field as binormal vector field of a regular curve and call this frame as "Type-2 Bishop frame in E_{1}^{3} ". Thereafter, by translating type-2 Bishop frame vectors to O the center of Lorentzian sphere of three-dimensional Minkowski space, I introduce new spherical images and call them as type-2 Bishop spherical images in E_{1}^{3}. Serret-Frenet apparatus of these new spherical images are obtained in terms of base curves's type-2 Bishop invariants. Additionally, I express some interesting theorems and illustrate one example of our main results.

Keywords: Spacelike curve, spherical image, Minkowski space, Bishop frame,general helix, Bertrand mate.

1 Introduction

Bishop frame, which is also called alternative or parallel frame of the curves, was introduced by L.R:Bishop in 1975 by means of parallel vector fields. Recently, many research papers related to this concept have been treated in Minkowski space, see $[1,2,3,7,8]$. And recently, this special frame is extended to study of canal and tubular surfaces, we refer to [7].

In this work, using common vector field as the binormal vector of Serret-Frenet frame, I introduce a new version of the Bishop frame in E_{1}^{3}.I call it is "Type-2 Bishop frame" of regular curves. Thereafter, translating new frames vector fields to the center of unit sphere, I obtain new spherical images. We call them as "Type-2 Bishop Spherical Image" of regular curves.

2 Preliminaries

The Minkowski three dimensional space E_{1}^{3} is a real vector space \mathbb{R}^{3} endowed with the standard flat Lorentzian metric given by $<,>_{L}=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}$ where $\left(x_{1}, x_{2}, x_{3}\right)$ is rectangular coordinate system of E_{1}^{3}. Since g is an indefinite metric. Let $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ be arbitrary an vectors in E_{1}^{3}, the Lorentzian cross product of u and v defined by

$$
u \times v=-\operatorname{det}\left[\begin{array}{ccc}
-i & j & k \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right]
$$

[^0]Recall that a vector $v \in E_{1}^{3}$ can have one of three Lorentzian characters: it can be spacelike if $g(v, v)>0$ or $v=0$; timelike if $g(v, v)<0$ and null(lightlike) if $g(v, v)=0$ for $v \neq 0$. Similarly, an arbitrary curve $\delta=\delta(s)$ in E_{1}^{3} can locally be spacelike, timelike or null (lightlike) if all of its velocity vector δ^{\prime} are respectively spacelike, timelike, or null (lightlike), for every $s \in I \subset \mathbb{R}$. The pseudo-norm of an arbitrary vector $a \in E_{1}^{3}$ is given by $\|a\|=\sqrt{|g(a, a)|}$. The curve $\delta=\delta(s)$ is called a unit speed curve if velocity vector δ^{\prime} is unit i.e, $\left\|\delta^{\prime}\right\|=1$. For vectors $v, w \in E_{1}^{3}$ it is said to be orthogonal if and only if $g(v, w)=0$. Denote by $\{T, N, B\}$ the moving Serret-Frenet frame along the curve $\delta=\delta(s)$ in the space E_{1}^{3}.

The Lorentzian sphere S_{1}^{2} of radius $r>0$ and with the center in the origin of the space E_{1}^{3} is defined by $S_{1}^{2}(r)=\left\{p=\left(p_{1}, p_{2}, p_{3}\right) \in E_{1}^{3}: g(p, p)=r^{2}\right\}$.

Proposition 2.1.1: Let two regular curves be α and β in $E_{1}^{3} .\{T, N, B\}$ and $\left\{T^{*}, N^{*}, B^{*}\right\}$ are Frenet frames of α and β, respectively. If the principal normal vectors are linearly dependent, i.e $N=\lambda N^{*}(\lambda \in \mathbb{R})$, then α and β called Bertrand mates.

Proposition 2.1.2: Let two regular curves be α and β in $E_{1}^{3} \cdot\{T, N, B\}$ and $\left\{T^{*}, N^{*}, B^{*}\right\}$ are Frenet frames of α and β, respectively. If the tangent vectors of these curves are perpendicular to each other, i.e $<T, T^{*}>=0$, then α is involute of β.

Proposition 2.1.3: Let $\varphi=\varphi(s)$ and $\varphi^{*}=\varphi^{*}(s)$ be simple closed curves in E_{1}^{3}. These curves will be denoted by C. The normal plane at every point P on the curve meets the curve at a single point Q other than P we call the point Q the opposite point of P. We consider this curves having parallel tangents T and T^{*} opposite directions at opposite points φ and φ^{*} of the curve, then φ and φ^{*} curves called constant breadth, see [9].

3 Type-2 Bishop Frame of a Regular Curve in E_{1}^{3}

Theorem 3.1.1: Let $\alpha=\alpha(s)$ be spacelike curve with a spacelike principal normal unit speed. If $\left\{\Omega_{1}, \Omega_{2}, B\right\}$ is adapted frame, then we have

$$
\left[\begin{array}{c}
\Omega_{1}^{\prime} \tag{3.1.1}\\
\Omega_{2}^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & \xi_{1} \\
0 & 0 & -\xi_{2} \\
-\xi_{1} & -\xi_{2} & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\Omega_{1} \\
\Omega_{2} \\
B
\end{array}\right]
$$

Proof: Let investigate "Type-2 Bishop Frame in $E_{1}^{3 "}$ relation with Serret-Frenet frame, where $g\left(\Omega_{1}, \Omega_{1}\right)=g\left(\Omega_{2}, \Omega_{2}\right)=1, g(B, B)=-1$, and $g\left(\Omega_{1}, \Omega_{2}\right)=g\left(\Omega_{1}, B\right)=g\left(\Omega_{2}, B\right)=0$. If Ω_{1}, Ω_{2} are spacelike vectors but B timelike vector then we can write

$$
\begin{align*}
\Omega_{1}^{\prime} & =a_{11} \Omega_{1}+a_{12} \Omega_{2}+a_{13} B \\
\Omega_{2}^{\prime} & =a_{21} \Omega_{1}+a_{22} \Omega_{2}+a_{23} B \tag{3.1.2}\\
B^{\prime} & =a_{31} \Omega_{1}+a_{32} \Omega_{2}+a_{33} B
\end{align*}
$$

If we take inner product of equations (3.1.2) according to $\left\{\Omega_{1}, \Omega_{2}, B\right\}$ respectively, we find $a_{11}=0$, $a_{12}=<\Omega_{1}^{\prime}, \Omega_{2}>, a_{13}=-<\Omega_{1}^{\prime}, B>, a_{21}=<\Omega_{2}^{\prime}, \Omega_{1}>, a_{22}=0, a_{23}=-<\Omega_{2}^{\prime}, B>$, $a_{31}=<\Omega_{1}, B^{\prime}>=-a_{13}, a_{32}=<\Omega_{2}, B^{\prime}>=a_{23}, a_{33}=0$. From above equations the Bishop frame has

$$
\left[\begin{array}{c}
\Omega_{1}^{\prime} \\
\Omega_{2}^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & a_{12} & a_{13} \\
-a_{12} & 0 & a_{23} \\
-a_{13} & a_{23} & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\Omega_{1} \\
\Omega_{2} \\
B
\end{array}\right]
$$

Considering the obtained frame, $a_{12}=0, a_{13}=\xi_{1}, a_{23}=-\xi_{2}$. We have type- 2 Bishop frame in E_{1}^{3}.

$$
\left[\begin{array}{c}
\Omega_{1}^{\prime} \tag{3.1.3}\\
\Omega_{2}^{\prime} \\
B^{\wedge}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & \xi_{1} \\
0 & 0 & -\xi_{2} \\
-\xi_{1} & -\xi_{2} & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\Omega_{1} \\
\Omega_{2} \\
B
\end{array}\right]
$$

Thus we have equation (3.1.3) or shortly $X^{\prime}=A X$. Morever A is semi skew matrix where ξ_{1} first curvature and ξ_{2} called second curvature of the curve, there the curvatures are defined by

$$
\xi_{1}=-<\Omega_{1}^{\prime}, B>, \quad \xi_{2}=<\Omega_{2}^{\prime}, B>
$$

Theorem 3.1.2: Let $\{T, N, B\}$ and $\left\{\Omega_{1}, \Omega_{2}, B\right\}$ be Frenet ve Bishop frames, respectively. There exists a relation between them as

$$
\left[\begin{array}{c}
T \tag{3.1.4}\\
N \\
B
\end{array}\right]=\left[\begin{array}{ccc}
\sinh \theta(s) & \cosh \theta(s) & 0 \\
\cosh \theta(s) & \sinh \theta(s) & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
\Omega_{1} \\
\Omega_{2} \\
B
\end{array}\right]
$$

where θ is the angle between the vectors N and Ω_{1}.
Proof: We write the tangent vector according to frame $\left\{\Omega_{1}, \Omega_{2}, B\right\}$ as

$$
T=\sinh \theta(s) \Omega_{1}+\cosh \theta(s) \Omega_{2}
$$

and differentiate with respect to s

$$
\begin{gather*}
T^{\prime}=\kappa N=\theta^{\prime}(s)\left[\cosh \theta(s) \Omega_{1}+\sinh \theta(s) \Omega_{2}\right]+ \tag{3.1.3}\\
\sinh \theta(s) \Omega_{1}^{\prime}+\cosh \theta(s) \Omega_{2}^{\prime}
\end{gather*}
$$

Substituting $\Omega_{1}^{1}=\xi_{1} B$ and $\Omega_{2}^{1}=-\xi_{2} B$ to equation (3.3), we get

$$
\left.\begin{array}{rl}
\kappa N=\theta^{\prime}(s) & {[}
\end{array} \cosh \theta(s) \Omega_{1}+\sinh \theta(s) \Omega_{2}\right] ~ 子 ~\left(\sinh \theta(s) \Omega_{1}-\cosh \theta(s) \Omega_{2}\right.
$$

From equation (3.1.4) we get $\theta(s)=\operatorname{Arg} \tanh \frac{\xi_{2}}{\xi_{1}}, \theta^{\prime}(s)=\kappa(s), N=\cosh \theta(s) \Omega_{1}+\sinh \theta(s) \Omega_{2}$, and

$$
\left[\begin{array}{c}
T \tag{3.1.4}\\
N \\
B
\end{array}\right]=\left[\begin{array}{ccc}
\sinh \theta(s) & \cosh \theta(s) & 0 \\
\cosh \theta(s) & \sinh \theta(s) & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
\Omega_{1} \\
\Omega_{2} \\
B
\end{array}\right]
$$

Since there is a solition for θ satisyfing any initial condition, this show that localy relatively parallel normal fields exist. Besides equation (3.1.2) can also written as

$$
B^{\prime}=\tau N=-\xi_{1} \Omega_{1}+\xi_{2} \Omega_{2}
$$

Taking the norm of both sides, we have

$$
\begin{equation*}
\tau=\sqrt{\left|\xi_{2}^{2}-\xi_{1}^{2}\right|} \tag{3.1.2}
\end{equation*}
$$

$$
\begin{equation*}
1=\sqrt{\left|\left(\frac{\xi_{1}}{\tau}\right)^{2}-\left(\frac{\xi_{2}}{\tau}\right)^{2}\right|} \tag{3.1.5}
\end{equation*}
$$

and so by (3.1.5), we may express
$\left\{\xi_{1}=\tau(s) \cosh \theta(s), \quad \xi_{2}=\tau(s) \sinh \theta(s)\right.$
The frame $\left\{\Omega_{1}, \Omega_{2}, B\right\}$ is properly oriented, and τ and $\theta(s)={ }_{0}^{s} \kappa(s) d s$ are polar coordinates for the curve $\alpha=\alpha(s)$. We shall call the set $\left\{\Omega_{1}, \Omega_{2}, B, \xi_{1}, \xi_{2}\right\}$ as type- 2 Bishop invariants of the curve $\alpha=\alpha(s)$ in E_{1}^{3}.

4 New Spherical Images of a Regular Curve

Let $\alpha=\alpha(s)$ be a regular curve in E_{1}^{3}. If we translate type- 2 Bishop frame vectors to the center O of Lorentzian sphere of three-dimensional Minkowski space, we introduce new spherical images in E_{1}^{3}.

4.1 Ω_{1} Bishop Spherical Image

Definition 4.1.1: Let $\alpha=\alpha(s)$ be a regular spacelike curve in E_{1}^{3}. If we translate of the first vector field of type-2 Bishop frame to the center O of the unit sphere S_{1}^{2}, we obtain a spherical image $\varphi=\varphi\left(s_{\varphi}\right)$. This curve is called Ω_{1} Bishop spherical image or indicatrix of the curve $\alpha=\alpha(s)$.

Let $\varphi=\varphi\left(s_{\varphi}\right)$ be Ω_{1} Bishop spherical image of a regular curve $\alpha=\alpha(s)$. We shall investigate relations among type-2 Bishop and Serret-Frenet invariants. First, we differentiate

$$
\varphi^{\prime}=\frac{d \varphi}{d s_{\varphi}} \cdot \frac{d s_{\varphi}}{d s}=\xi_{1} B
$$

Here, we shall denote differentiation according to s by a dash, and differentiation according to s_{φ} by a dot. Taking the norm both sides the equation above, we have

$$
\begin{equation*}
T_{\varphi}=B, \quad \frac{d s_{\varphi}}{d s}=\xi_{1} \tag{4.1.1}
\end{equation*}
$$

we differentiate (4.1.1) ${ }_{1}$ as

$$
T_{\varphi}^{\prime}=\dot{T}_{\varphi} \frac{d s_{\varphi}}{d s}=-\left(\xi_{1} \Omega_{1}+\xi_{2} \Omega_{2}\right)
$$

So, we have

$$
\dot{T}_{\varphi}=-\left(\Omega_{1}+\frac{\xi_{2}}{\xi_{1}} \Omega_{2}\right)
$$

Since, we have the first curvature and principal normal of φ

$$
\begin{equation*}
\kappa_{\varphi}=\left\|\dot{T}_{\varphi}\right\|=\sqrt{\left|\left(\frac{\xi_{2}}{\xi_{1}}\right)^{2}-1\right|}, \quad N_{\varphi}=\frac{-1}{\kappa_{\varphi}}\left(\Omega_{1}-\frac{\xi_{2}}{\xi_{1}} \Omega_{2}\right) \tag{4.1.2}
\end{equation*}
$$

Cross product of $T_{\varphi} \times N_{\varphi}$ gives us the binormal vector field of Ω_{1} Bishop spherical image of $\alpha=\alpha(s)$

$$
\begin{equation*}
B_{\varphi}=\frac{1}{\kappa_{\varphi}}\left(-\frac{\xi_{2}}{\xi_{1}} \Omega_{1}+\Omega_{2}\right) \tag{4.1.3}
\end{equation*}
$$

Using the formula of the torsion, we write a relation

$$
\begin{equation*}
\tau_{\varphi}=\frac{\left(\xi_{1}\right)^{7} \cdot\left(\frac{\xi_{2}}{\xi_{1}}\right)^{\prime}}{\left|\xi_{2}^{2}-\xi_{1}^{2}\right|} \tag{4.1.4}
\end{equation*}
$$

4.2 Ω_{2} Bishop Spherical Image

Definition 4.2.1: Let $\alpha=\alpha(s)$ be a regular spacelike curve in E_{1}^{3}.If we translate of the second vector field of type-2 Bishop frame to the center of the unit sphere S_{1}^{2}, we obtain a spherical image $\beta=\beta\left(s_{\beta}\right)$. This curve is called Ω_{2} Bishop spherical image or indicatrix of the curve $\alpha=\alpha(s)$.

Let $\beta=\beta\left(s_{\beta}\right)$ be Ω_{2} Bishop spherical image of the regular curve $\alpha=\alpha(s)$. We can write that

$$
\beta^{\prime}=\frac{d \beta}{d s_{\beta}} \cdot \frac{d s_{\beta}}{d s}=-\xi_{2} B
$$

Similar to Ω_{2} Bishop spherical image, one can have

$$
\begin{equation*}
T_{\beta}=-B, \quad \frac{d s_{\beta}}{d s}=\xi_{2} \tag{4.2.1}
\end{equation*}
$$

So, by differentiating of the formula $(4.2 .1)_{1}$, we get

$$
T_{\beta}^{\prime}=\dot{T}_{\beta} \frac{d s_{\beta}}{d s}=\xi_{1} \Omega_{1}+\xi_{2} \Omega_{2}
$$

or in other words

$$
\dot{T}_{\beta}=\frac{\xi_{1}}{\xi_{2}} \Omega_{1}+\Omega_{2}
$$

Since, we express

$$
\begin{equation*}
\kappa_{\beta}=\left\|\dot{T}_{\beta}\right\|=\sqrt{\left|1-\left(\frac{\xi_{1}}{\xi_{2}}\right)^{2}\right|}, \quad N_{\beta}=\frac{1}{\kappa_{\beta}}\left(\frac{\xi_{1}}{\xi_{2}} \Omega_{1}+\Omega_{2}\right) \tag{4.2.2}
\end{equation*}
$$

Cross product of $T_{\varphi} \times N_{\varphi}$ gives us

$$
\begin{equation*}
B_{\beta}=\frac{1}{\kappa_{\beta}}\left(\Omega_{1}+\frac{\xi_{1}}{\xi_{2}} \Omega_{2}\right) \tag{4.2.3}
\end{equation*}
$$

By the formula of the torsion, we have

$$
\begin{equation*}
\tau_{\beta}=\frac{\left(\xi_{2}\right)^{7} \cdot\left(\frac{\xi_{1}}{\xi_{2}}\right)^{\prime}}{\left|\xi_{2}^{2}-\xi_{1}^{2}\right|} \tag{4.2.4}
\end{equation*}
$$

4.3 Binormal Bishop Spherical Image

Definition 4.3.1: Let $\alpha=\alpha(s)$ be a regular spacelike curve in E_{1}^{3}. If we translate of the third vector field of type-2 Bishop frame to the center O of the unit sphere S_{1}^{2}, we obtain a spherical image $\phi=\phi\left(s_{\phi}\right)$. This curve is called Binormal Bishop spherical image or indicatrix of the curve $\alpha=\alpha(s)$.

Let $\phi=\phi\left(s_{\phi}\right)$ be Binormal Bishop spherical image of a regular spacelike curve $\alpha=\alpha(s)$. One can differentiate of ϕ with respect to s :

$$
\phi^{\prime}=\frac{d \phi}{d s_{\phi}} \cdot \frac{d s_{\phi}}{d s}=-\left(\xi_{1} \Omega_{1}+\xi_{2} \Omega_{2}\right)
$$

In terms of type-2 Bishop frame vector fields, we have tangent vector of the spherical image as follows

$$
\begin{equation*}
T_{\phi}=\frac{-\left(\xi_{1} \Omega_{1}+\xi_{2} \Omega_{2}\right)}{\sqrt{\left|\xi_{2}^{2}-\xi_{1}^{2}\right|}}, \quad \frac{d s_{\phi}}{d s}=\sqrt{\left|\xi_{2}^{2}-\xi_{1}^{2}\right|} \tag{4.3.1}
\end{equation*}
$$

In order to determine first curvature of ϕ, we write

$$
\dot{T}_{\phi}=P^{\prime}(s) \Omega_{1}+Q^{\prime}(s) \Omega_{2}+\left[P(s) \xi_{1}-Q(s) \xi_{2}\right] B
$$

where $P(s)=\frac{\xi_{1}}{\sqrt{\left|\xi_{2}^{2}-\xi_{1}^{2}\right|}} \quad$ and $\quad Q(s)=\frac{\xi_{2}}{\sqrt{\left|\xi_{2}^{2}-\xi 1\right|}}$.
Since, we immediately arrive at

$$
\begin{align*}
& \kappa_{\phi}=\left\|\dot{T}_{\phi}\right\|= \tag{4.3.2}\\
& \quad \sqrt{\left.\mid\left(P^{\prime}(s)\right)^{2}+\left(Q^{\prime}(s)\right)^{2}-\left[P(s) \xi_{1}-Q(s) \xi_{2}\right)\right]^{2} \mid}
\end{align*}
$$

Therefore, we have the principal normal

$$
\begin{equation*}
N_{\phi}=\frac{-1}{\kappa_{\phi}}\left\{P^{\prime}(s) \Omega_{1}+Q^{\prime}(s) \Omega_{2}+\left[P(s) \xi_{1}-Q(s) \xi_{2}\right] B\right\} \tag{4.3.3}
\end{equation*}
$$

By the cross product of $T_{\phi} \times N_{\phi}$, we obtain the binormal vector field

$$
\begin{align*}
& B_{\phi}=\frac{1}{\kappa_{\phi} \cdot \sqrt{\left|\xi_{2}^{2}-\xi_{1}^{2}\right|}}\left\{\left[Q(s) \xi_{2}-P(s) \xi_{1}\right] \Omega_{1}+\right. \tag{4.3.4}\\
& {\left.\left[P(s) \xi_{1}-Q(s) \xi_{2}\right] \Omega_{2}-\left[Q^{\prime}(s) \xi_{1}+P^{\prime}(s) \xi_{2}\right] B\right\} }
\end{align*}
$$

where $P(s)=\frac{\xi_{1}}{\sqrt{\left|\xi_{2}^{2}-\xi_{1}^{2}\right|}} \quad$ and $\quad Q(s)=\frac{\xi_{2}}{\sqrt{\left|\xi_{2}^{2}-\xi_{1}^{2}\right|}}$.

By means of obtained equations, we express the torsion of the Binormal Bishop spherical image

$$
\begin{align*}
& \tau_{\phi}=\frac{1}{\kappa_{\phi}^{2}}\left\{\xi _ { 1 } \left[\xi_{1} \xi_{1} \xi_{2}^{\prime}+\xi_{2} \xi_{2}^{2}+\xi_{2}^{\prime}\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{\prime}\right.\right. \\
& \left.\quad-\left(\xi_{1}^{2}+\xi_{2}^{2}\right)\left(\xi_{2}^{\prime \prime}+\left(\xi_{1}^{2}+\xi_{2}^{2}\right) \xi_{2}\right)\right] \tag{4.3.5}\\
& \\
& \quad+\xi_{2}\left[\left(\xi_{1}^{2}+\xi_{2}^{2}\right)\left(\xi_{1}^{\prime \prime}+\left(\xi_{1}^{2}+\xi_{2}^{2}\right) \xi_{1}\right)\right. \\
& \left.\quad-\xi_{1} \xi_{1}^{2}-\xi_{1}^{\prime} \xi_{2} \xi_{2}^{\prime}-\xi_{1}^{\prime}\left(\left(\xi_{1}^{2}+\xi_{2}^{2}\right)\right]\right\}
\end{align*}
$$

Consequently, we determined Serret-Frenet invariants of the Binormal Bishop spherical image according to type-2 Bishop invariants in E_{1}^{3}.

5 Main Results

Theorem 5.1.1: Let $\alpha=\alpha(s)$ be a regular spacelike curve in 3-dimensional Minkowski space. Both of Ω_{1} and Ω_{2} spherical image of α are Bertrand mates.

Proof: Let us denote the principal normal vectors of Ω_{1} and Ω_{2} and binormal spherical images as N_{φ}, N_{β} and N_{ϕ} respectively.

The principal normal vectors are given in $(4.1 .2)_{2},(4.2 .2)_{2},(4.3 .3)$

$$
\begin{aligned}
N_{\varphi}=\frac{1}{\kappa_{\varphi}}\left(\Omega_{1}-\frac{\xi_{2}}{\xi_{1}} \Omega_{2}\right), \quad N_{\beta} & =\frac{1}{\kappa_{\beta}}\left(-\frac{\xi_{1}}{\xi_{2}} \Omega_{1}+\Omega_{2}\right) \\
N_{\phi}= & \frac{1}{\kappa_{\phi}}\left\{\left(\frac{-P(s) P^{\prime}(s)}{\xi_{1}}\right) \Omega_{1}\right. \\
& -\left(\frac{Q(s) Q^{\prime}(s)}{\xi_{2}}\right) \Omega_{2} \\
+ & {\left.\left.\left[Q(s) \xi_{2}-P(s) \xi_{1}\right)\right] B\right\} }
\end{aligned}
$$

where

$$
\begin{aligned}
& P(s)=\frac{-\xi_{1}}{\sqrt{\left|\xi_{1}^{2}-\xi_{2}^{2}\right|}} \quad Q(s)=\frac{\xi_{2}}{\sqrt{\left|\xi_{1}^{2}-\xi_{2}^{2}\right|}} \\
& \kappa_{\varphi}=\sqrt{\left|1-\left(\frac{\xi_{2}}{\xi_{1}}\right)^{2}\right|} \kappa_{\beta}=\sqrt{\left|\left(\frac{\xi_{1}}{\xi_{2}}\right)^{2}-1\right|} \\
& \kappa_{\phi}=\sqrt{\left.\left(\frac{P(s) P^{\prime}(s)}{\xi_{1}}\right)^{2}-\left(\frac{Q(s) Q^{\prime}(s)}{\xi_{2}}\right)^{2}+\left[Q(s) \xi_{2}-P(s) \xi_{1}\right)\right]^{2}}
\end{aligned}
$$

By putting curvatures κ_{φ} and κ_{β} of ξ_{1} and ξ_{2} spherical images, we have the principal normal vectors as

$$
N_{\varphi}=\frac{1}{\kappa_{\varphi}}\left(\Omega_{1}-\frac{\xi_{2}}{\xi_{1}} \Omega_{2}\right), \quad N_{\beta}=\frac{1}{\kappa_{\beta}}\left(-\frac{\xi_{1}}{\xi_{2}} \Omega_{1}+\Omega_{2}\right)
$$

It can be seen $N_{\varphi}=-N_{\beta}$, so the principal normal vectors of Ω_{1} and Ω_{2} spherical images are linearly dependent. As a result of this from proposition 2.1.1, they are Bertrand mates.

Theorem 5.1.2: Let $\alpha=\alpha(s)$ be a regular curve in 3-dimensional Minkowski space. Both of Ω_{1}, Ω_{2} and B spherical image of α. Both of Ω_{1} and Ω_{2} spherical images of α are spherical involutes for binormal spherical image of α.

Proof: Let us denote the tangent vectors of Ω_{1} and Ω_{2} spherical images as T_{φ}, T_{β} and T_{ϕ} respectively. These tangent vectors are given in $(4.1 .1)_{1},(4.2 .1)_{1}$ and $(4.3 .3)_{1}$. If the inner products are calculated, we get

$$
<T_{\varphi}, T_{\phi}>=0, \quad<T_{\beta}, T_{\phi}>=0
$$

The tangent vectors of Ω_{1} and Ω_{2} spherical images are perpendicular to tangent vectors of binormal spherical images. So the proof is completed from proposition 2.1.2.

Theorem 5.1.3: Let $\alpha=\alpha(s)$ be a regular curve in 3-dimensional Minkowski space. Both of Ω_{1}, Ω_{2} and B spherical image of α. Binormal vector of Ω_{1} are orthogonal to normal vector Ω_{2}.

Proof: Let us denote the binormal vectors of Ω_{1} and principal normal vector of Ω_{2}, B_{φ} and N_{β} respectively. From (4.1.3), (4.2.2) 2 this vectors are given

$$
B_{\varphi}=\frac{1}{\kappa_{\varphi}}\left(-\frac{\xi_{2}}{\xi_{1}} \Omega_{1}+\Omega_{2}\right), \quad N_{\beta}=\frac{1}{\kappa_{\beta}}\left(-\frac{\xi_{1}}{\xi_{2}} \Omega_{1}+\Omega_{2}\right)
$$

If the Lorentzian inner product of B_{φ} and N_{β} are calculated, we get $<B_{\varphi}, N_{\beta}>=0$. It can be seen that, Binormal vector of Ω_{1} and normal vector Ω_{2} are perpendicular.

Theorem 5.1.4: Let $\alpha=\alpha(s)$ be a regular curve in 3-dimensional Minkowski space. Both of Ω_{1} and Ω_{2} spherical images curves of α are constant breadth.

Proof: Let us denote the tangent vectors of Ω_{1} and Ω_{2} spherical images as T_{φ}, T_{β} and T_{ϕ} respectively. These tangent vectors are given in $(4.1 .1)_{1},(4.2 .1)_{1}$ and $(4.3 .3)_{1}$.

$$
T_{\varphi}=-B, \quad T_{\beta}=B, \quad T_{\phi}=\frac{-\xi_{1} \Omega_{1}+\xi_{2} \Omega_{2}}{\sqrt{\left|\xi_{1}^{2}-\xi_{2}^{2}\right|}}
$$

It can be seen that $T_{\varphi}=-T_{\beta}$. From proposition 2.1.3 they are constant breadth.

6 Example

In this section, we illustrate one example of Frenet frame and new spherical images in E_{1}^{3}.
Example 6.1.2: Next, let us consider the following unit speed curve $w(s)$ of E_{1}^{3} by $w=$ $w(s)=(s, \sqrt{2} \ln (\operatorname{sech}(s)), \sqrt{2} \arctan (\sinh (s)))$. It is rendered in figure 1.

And this curves's curvature functions are expressed as in E_{1}^{3}
$\{\kappa(s)=\sqrt{2} \operatorname{sech}(s), \quad \tau(s)=\operatorname{sech}(s)$.
The Serret-Frenet frame of the $w=w(s)$ may be written by the aid Mathematical program as follows

$$
\begin{aligned}
& T=(1, \sqrt{2} \tanh (s), \sqrt{2} \operatorname{sech}(s)), \\
& N=(0, \operatorname{sech}(s),-\tanh (s)) \\
& B=(\sqrt{2},-\tanh (s), \operatorname{sech}(s)) \\
& \theta(s)=\sqrt{2}{ }_{0}^{s} \sec h(s) d s=\sqrt{2} \arctan (\sinh (s))
\end{aligned}
$$

Using transformation matrix equation (3.1.4) we get $w=w(s)$ and tangent, normal, binormal spherical images of unit speed curve with respect to Serret-Frenet frame. respectively Fig 1,2a, 2b, 2c.we have type-2 Bishop spherical images of the unit speed curve $w=w(s)$, see figures 3a,3b,3c

$$
\begin{aligned}
& \Omega_{1}=\frac{1}{\sinh ^{2} \theta+\cosh ^{2} \theta}(-\sinh \theta,-\sqrt{2} \tanh \theta \sec h \theta-\cosh \theta \sec h \theta \\
& \quad,-\sqrt{2} \sinh \theta \sec h \theta-\cosh \theta \tanh \theta) \\
& \Omega_{2}=\frac{1}{\sinh ^{2} \theta+\cosh ^{2} \theta}(\cosh \theta, \sqrt{2} \tanh \theta \cosh \theta-\sinh \theta \sec h \theta \\
& , \sqrt{2} \cosh \theta \sec h \theta-\sinh \theta \tanh \theta) \\
& B=(\sqrt{2},-\tanh (s), \sec h(s))
\end{aligned}
$$

Fig. 1

Fig. $2 a$

Fig. $2 b$

Fig.2c

Fig. $3 a$

Fig.3b

Fig.3c

REFERENCES

[1] A.T. Ali, R. Lopez, Timelike B^{2}-slant helices in Minkowski space E_{1}^{4}, Arch. Math. (Brno) 46, (2010), 39-46.
[2] A.T. Ali, M. Turgut, Position vector of a time-like slant helix in Minkowski 3-space, J.Math. Anal. Appl. 365, (2010), 559-569.
[3] B.Bükcü, M.K. Karacan The Bishop Darboux rotation axis of the spacelike curve in Minkowski 3-space, Ege University, J. Fac. Sci. 3 (1), (2007), 1-5.
[4] L.R Bishop, There is more than one way to frame a curve, Amer. Math. Monthly 82 (3),(1975), 246-251.
[5] M Barros, A Ferrandez, P Lucas, MA Merono, General helices in three dimensional Lorentzian space forms, Rocky Mountain J. Math. 31, (2001),373-388.
[6] M. Fujivara, On space curves of Constant Breadtl, Tohoku Math.J. 5 (1914), 179-184.
[7] M.K. Karacan, B.Bükcü, An alternative moving frame for tubular surface around the spacelike curve with a spacelike binormal in Minkowski 3-space, Math. Morav. 11, (2007), 73-80.
[8] M. Petroviç- Torgasev, E. Sucuroviç, Some Characterizations of the spacelike, the timelike and Null Curves on the Pseudohyperbolic space H_{0}^{2} in E_{1}^{3} Kraguevac J. Math. 22, (2000), 71-82.
[9] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turkish J. math. 28 (2), (2004), 531-537.
[10] S. Yılmaz, M. Turgut, A new version of Bishop Frame and An Application to Spherical Images, Journal of Mathematical Analysis and Applications. 371, (2010), 764-776.

[^0]: ${ }^{1}$ Correspondence: E-mail: suha.yilmaz@deu.edu.tr

