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Abstract 
We consider the equation  𝑝(𝑥)𝑦′′ +  𝑞(𝑥)𝑦′ +  𝑟(𝑥)𝑦 =  𝜙(𝑥)  for  𝑝′′ − 𝑞′ + 𝑟 = 0,  where it 

is possible to obtain the solutions 𝑦1 and 𝑦2 of the corresponding homogeneous equation and a 

particular solution 𝑦𝑝 for the original equation, and also for  𝑝′′ − 𝑞′ + 𝑟 ≠ 0, where we must 

know 𝑦1 to construct 𝑦2 and 𝑦𝑝 via two integrations of certain differential relation.
1
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1. Introduction    

 

Here we study the general solution of second order linear differential equation: 

 

                       𝑝(𝑥)𝑦 ′′ +  𝑞(𝑥)𝑦 ′ +  𝑟(𝑥)𝑦 =  𝜙(𝑥),                                                          (1)   

 

via an alternative (but equivalent) method to the variation of parameters technique of Newton 

(Principia)-Bernoulli-Euler-Lagrange [1]. It is convenient to consider two cases: 

 

a).  𝑝′′ −  𝑞′ +  𝑟 = 0.       

 

In Sec. 2 we exhibit that the differential expression [2]: 
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gives the complete solution of (1). 

 

b).  𝑝′′ −  𝑞′ +  𝑟 ≠ 0.       

 

The Sec. 3 shows that two integrations of: 
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′′ +  𝑞(𝑥)𝑦1
′ +  𝑟(𝑥)𝑦1 =  0,                       (3)   

 

allows to construct the general solution of (1).    

 

 

2. Case  𝒑′′ − 𝒒′ +  𝒓 = 𝟎      

 

In this situation first we calculate the wronskian W, and after two successive integrations of (2) 

we obtain the complete solution of (1):  

  

                              𝑦(𝑥) =  𝑐1 𝑦1(𝑥) +  𝑐2 𝑦2(𝑥) + 𝑦𝑝(𝑥),                                                (4)   

where    

      𝑦1 = 𝑊𝑝,    𝑦2 = 𝑦1 ∫
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in harmony with the variation of parameters method [1, 3]. 

 

 

3. Case  𝒑′′ − 𝒒′ +  𝒓 ≠ 𝟎      
 

Here we need one solution of the homogeneous equation associated to (1), then two integrations 

of (3) give the general solution (4) such that: 
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and (6) implies (5) when 𝑦1 = 𝑊𝑝. The integration of (3) justifies the traditional ansatz [1, 3] 

employed in the variation of parameters technique. It is easy to apply our approach to differential 

equations of third and fourth order [4]. 

 

The fundamental differential relation (3) can be deduced via the self-adjoint and exact operators 

concepts [3, 5, 6] applied to (1) (thus it is not necessary the Lagrange’s ansatz), with the 

important participation of the expression (2) of Abel-Liouville-Ostrogradski [7] for the 

wronskian  𝑊 = 𝑦1 𝑦2
′ − 𝑦2 𝑦1

′ .                  
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