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Abstract

The variation in acceleration of a frame is examined in order to compute some elementary results
with Unruh radiation. This is a model for the variation in black hole mass due to Hawking radiation
and the adjustment of an accelerated frame closer to the event horizon. The increase in detected
radiation on this frame is a form of IR to UV renormalization group flow. The group flow leads to
topological phase of gauge charge carriers, or charged electrons in the U(1) electromagnetic case, on
a stretched horizon.

1 Introduction

This paper is an exploration of the physics on an increasing accelerated frame. This is equivalent to slowly
lowering a frame to just above the event horizon of a black hole. Physically we expect the temperature
of Unruh radiation to become enormous [1]. This is examined by looking at a probe field that is increas-
ingly accelerated and approaches the Planck acceleration. This study reveals a number of interesting
relationships between the topological phase of a quantum system and spacetime.

The paper first examines the a time variation in acceleration within special relativity. The basic
results for the parameterization of position, time and four velocity are worked. This is then used to look
at the role of Unruh radiation. As the acceleration increases the Unruh temperature will increase and
eventually approach the Planck temperature. This is illustrated in elementary terms. The next step is
to describe the dynamics of a probe field in this accelerated frame. The statistics of this interaction
reproduces the Shannon result which intertwines information and entropy. These results with accelerated
frames also hold for black hole physics. Finally the thermodynamics of this system is found to have
topological symmetry or phase. The probe field approaching the horizon interacts with particles that
are anyonic and where the gauge field interaction, or electromagnetic field, interacts with these charge
carriers by quantum Hall physics [2].

This paper is organized by starting with elementary physics of special relativity and building to
understand deeper foundations. The underlying physics of this is just quantum fields that interact with
a geodesic on a parametrized set of Lorentz boosts. The parametrization corresponding to an increasing
acceleration is then a renormalization group flow for a gauge theory which conserves charges for the field.
This examination of dg

dt > 0 and the RG flow is a potential method for addressing the relationship
between gauge field and the fermion fields which carry their charges and spacetime. While this is not
addressed in this paper this method with topological symmetry and phase is potentially a way of looking
at the change of phase with gravitation.

2 The Rindler Frame with dg
dt > 0

The accelerated observer is an elementary approach for the argument of the holographic principle. A
detector on the accelerated frame measures a thermal response from the vacuum with T ' g/2π[1]. If
the acceleration were increased it makes physical sense that the Unruh temperature would proportionately
increase. A physical situation where this acceleration increases, or where the gravitational acceleration
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of an evaporating black hole increases would then suggest that the energy of quanta emitted from the
Rindler horizon would increase.

A particle moves from rest according to an inertial frame F along the x-axis with an acceleration g.
After a time t this particle is now moving with velocity v along with an other inertial frame F ′. For the
particle then moving at velocity u′ in F ′ the acceleration is g = du′

dt′ . The Rindler frame is easily seen
from the velocity addition formula of special relativity u′ = u − v

1 − uv [3]. With t′ = γt and knowing the
accelerated particle is at this time in F ′ with v = u it is easy to see that

g =
du′

dt′
= γ3 du

dt
. (2.1)

The acceleration may then be expressed as gdt = d(γu), which when integrated from u = 0 at t = 0
results in

gt = γu =
u√

1 − u2
. (2.2)

By elementary algebra is is easy to see that u = gt/(1 − (gt)2) and this is

u =
dx

dt
= g−1 d

dt

√
1 + (gt)2, (2.3)

and we may integrate dx = g−1d
√

1 + (gt)2 to find the hyperbolic condition on the path x2 − t2 = g−2.
Clearly this means x = g−1cosh(gτ) and t = g−1sinh(gτ), with the further consequence γ = cosh(gτ)
and u = tanh(gτ). The position and time asymptote to the split horizon given by x = ± t.

For a variation in the acceleration we write the acceleration as

g =
du′

dt′
+ t′

d2u′

dt′2
+ . . . , (2.4)

where this expansion is only carried out to second order. This means we only consider a constant change
to the acceleration. The generalization of equation 2 is

gt = γu + tγ2 du

dt
, (2.5)

To solve this equation within the series, the acceleration is written as g = g1 + t′g2 + O(t′2) with

g1 = γu1 and g2 = γ2 d2u2

dt2 . The two velocities are computed and the relativistic addition formula of
velocities is used. As before u1 = tanh(gτ), and u2 is found from

γ
du2

dt
= g2t → u2 =

(1 − u1)eg2t
2 − (1 + u1)eC

eg2t2 + eC
. (2.6)

The constant is C = g2t
2
0 where at u1 = 0 we set t0 = 0 so that u2 = tanh(g2t). The coordinate

time t is related to the proper time τ by t = g−1sinh(gτ) and this results in the velocity

u =
tanh(g1τ) + tanh

(
g2
g21
sinh2(gτ)

)
1 − tanh(g1τ)tanh

(
g2
g21
sinh2(gτ)

) . (2.7)

Given that g = g1 + t′g2, this might seem to require further analysis, but the tanh function for large
arguments is close to unity and we may then approximate this by substituting g → g1 with little loss
of information. The velocity addition formula is a simple trigonometric identity which gives the final
approximate result

u ' tanh

(
g1τ +

g2

g2
1

sinh2(g1τ)

)
. (2.8)
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The position and time variables are easily seen to be x =
∫ τ

dτ ′sinh(g1τ
′ + g2

g21
sinh2(g1τ

′)) and

t =
∫ τ

dτ ′cosh(g1τ
′ + g2

g21
sinh2(g1τ

′)), and the hyperbolic condition on the path is evident.

3 Unruh Radiation

An observer on this frame will detect radiation that is emerges from the horizon at x′ = ± t′. We
introduce the null coordinates u = t + x, v = t − x for the advanced and retarded propagation

of fields. Parametrized by the proper time these coordinates are u = exp
(
g1τ + g2

g21
sinh2(g1τ)

)
and

v = − exp
(
−g1τ − g2

g21
sinh2(g1τ)

)
. The hyperbolic condition on the coordinates of the accelerated

frame XµXµ = − 1 means there is a parametrized set of Lorentz boosts generated by a Killing field
with KµKµ = − 1. The (u, v) Killing vector is [1]

Kµ = − g
(
e−Γτ ∂

∂u
+ eΓτ ∂

∂v

)
, (3.1)

for Γ = Γ(τ) = g1 + τ−1 g2
g1
sinh2(g1τ). The Killing vector is normal to the horizon along v, with

KµKµ = g

(
e−Γ(τ) ∂

∂u
eΓτ + eΓτ ∂

∂v
e−Γτ

)
= 0. (3.2)

On the future horizon the relationship between the inertial time v and the Killing time θ = g−1ln|v|.
This may be seen with the Killing vector such that K · θ = gv ∂θ∂v= 1. Similarly we have φ = g−1ln|u|.

A wave function with frequency ω restricted to the horizon with v > 0 is [1]

ψω(θ, x, y) = f(x, y)e−iωθ, (3.3)

that under a Fourier transform is

Fψω(θ, x, y) = ψ(Ω, x, y) =
1√
2π

∫ ∞
−∞

eiΩvψω(θ, x, y) (3.4)

=
1√
2π
f(x, y)

∫ ∞
−∞

exp
[
i
(

Ωv − ω

Γ
lnv
)]
dv. (3.5)

A π/2 rotation of the axis of integration with v = iy, and ln(iy) = lny + iπ/2 gives the Fourier
transform ∫ ∞

−∞
exp

[
i
(

Ωv − ω

Γ
lnv
)]
dv = i exp

(πω
2Γ

)∫ ∞
−∞

exp
[
−
(

Ωy − ω

Γ
lnv
)]
dv. (3.6)

A similar wave function for v < 0 across the horizon

ψω(θ, x, y) = f(x, y)exp

(
−i iω

Γ

)
, (3.7)

and analysis with the reflection leads to the wave function Ψ connecting the wave ψI in the Rindler wedge
region I to ψII across the horizon II as[1]

Ψ = ψI + exp
(
−πω

Γ

)
ψII . (3.8)

The Boltzmann factor exp
(
−πωΓ

)
then appears as
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Figure 1: Surface graph of how the Boltzmann factor changes with the acceleration dependent temper-
ature.

As proper time increases the argument of the exponent becomes very small and the Boltzmann factor
Z =

∑
i exp(−

πωi

Γ ) approaches unity. This is interpreted as an increase in temperature T = T0(g1 +
g2
g21
sinh2(g1τ)/τ). The expectation of the energy 〈E〉 = − ∂Z/∂Γ−1 for a continuum of energy levels is

〈E〉 = −
∫ ∞

0

exp
(
−πω

Γ

)
dω =

Γ

π
, (3.9)

which expands with the increase in acceleration 〈E〉 ' g1 + (g2τ
−1/g2

1)e2g1τ . To compute the ratio
r = 〈E〉/E0 the proper time is given by the Lambert W-function

τ = − 1

2πg1
W

(
−πg1rE0

2g2

)
=

1

2πg1

((
πg1rE0

2g2

)
−
(
πg1rE0

2g2

)2

+

3

2

(
πg1rE0

2g2

)3

− 8

3

(
πg1rE0

2g2

)4

+ . . . . (3.10)
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4 A Quantum Test Field

A quantum field on an accelerating frame will interact with the Unruh radiation. The energy scale of
the interaction, or transverse momentum, with the accelerated particle is determined by the magnitude
of the acceleration. In the case of an increasing acceleration the scale of these interactions will scale from
the IR to UV domain. The particle is considered by be as a sort of detector. The Lagrangian chosen is
L = µ

∫
γ
φdτ , which for a constant φ and µ = m is the standard Lagrangian for a particle in spacetime.

The Euler-Lagrange equation of motion for the particle is

d

dτ
(µφgµνU

ν) − µ

(
∂φ

∂xµ
+

1

2
φ
∂gαβ
∂xµ

UαUβ
)

= 0. (4.1)

This results in two equations

−dφ
dτ
cosh(Γτ) − φsinh(Γτ)

(
g1 +

2g2

g1
sinh(Γτ)cosh(Γτ)

)
− µ

∂φ

∂t
= 0

dφ

dτ
sinh(Γτ) + φcosh(Γτ)

(
g1 +

2g2

g1
sinh(Γτ)cosh(Γτ)

)
− µ

∂φ

∂x
= 0. (4.2)

For large enough τ we have tanh(Γτ) ' 1 and we expand

dφ

dτ
=

∂φ

∂t

∂t

∂τ
+

∂φ

∂x

∂x

∂τ
=

∂φ

∂t
cosh(Γτ) +

∂φ

∂x
sinh(Γτ)

in order to write the approximate equation

(cosh(γτ) + sinh(Γτ))
∂φ

∂t
+ 2φ

(
g1 +

2g2

g1
sinh(Γτ)cosh(Γτ)

)
' 0 (4.3)

For large τ this is further approximated with cosh(γτ) + sinh(Γτ) = 2cosh(Γτ) so that (cosh(γτ) + sinh(Γτ)) ∂φ∂t
' dφ

dτ . Further approximations permits us to write the differential equation as

dφ

dτ
'
(
g1 +

2g2

g1
e2g1τ

)
φ. (4.4)

The solution to this equation is

φ = φ0e
−g1τ exp

(
−g2

g1
e2g1τ

)
The Euclidean time is t = ~/kT from the temperature T = T0

(
g1 + (g2/g

2
1)sinh2(g1τ)/τ

)
. For large

proper time cosh(Γτ) ' 1
2e

Γτ and sinh2(g1τ)/τ ' 1
4e
g1τ/τ . The coordinate time t ' 4

g21
g2
τe−g1τ gives

the proper time

τ = − 1

g1
W

(
− g2

1

2g2

t

t0

)
. (4.5)

For the temperature T0 small we have the time t0 large, which is proportional to uncertainty in time ∆t
given the low energy ∆E ' T∆S near zero. The asymptotic expansion for the Lambert W-function for
the argument ≥ 3 is used W (z) = ln(z) − ln ln(z) + . . . , with

g1τ ' −
[
ln

(
− g2

1

2g2

t

t0

)
− ln ln

(
− g2

1

2g2

t

t0

)]
(4.6)

A simple approximation with just the first term permits us to write the solution

φ = − φ0z exp(−g2z/g1), z =
g2

1t

2g2t0
(4.7)
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Figure 2: The probe field φ(t) and its integration over time.

This solution and its integration with time is shown below

The time parameter may be written as g2z/g1 = ln p so the field is φ = − (g1/g2)p ln p, which
gives a form of the Shannon formula for information when integrated over time or equivalently summed
over p. The function is seen in the above graph where the integration is

∫
φdt =

∑
i pi ln(pi). The

amount of information saturates. This means the quantum probe will only encounter a finite amount of
information and once the acceleration is extreme the information flux decreases to zero. Now consider
the physical ansatz that the quantum field defines von Neumann entropy. The quantum test field starts
out in a pure state, reaches a maximum entropy that then decreases to a pure state. The integration
of this excitation by the Unruh vacuum, divided the net time interval of the integration, describes the
thermal entropy. The difference of between these two will be proportional to the information available to
the probe. The drop in the entropy of the probe physically corresponds to the situation where the horizon
at d = c2/g approaches the Planck scale. As the Planck scale is approached the amount of information
available decreases unit not more can be accessed at `p.
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There is a remarkable similarity to the theory of superfluidity. The condition for superfluidity was found
by Feynman to occur when the wave function of the Helium atoms were in a condition of maximal
smoothness corresponding to large separation of the atoms where they do not overlap[6]. This results in
certain quantum states of the atoms in rotons which are elementary quantum states of vortices. This is
a simple coherent state description, which has similar physics as above. Here we see with equation 25 a
field description that is similar to the type of wave function employed in Feynmans theory of superfluidity.
This then suggests there is some type of phase transition which we may expect in any field theory or
string theory of black hole holography.

5 Black Holes

The Rindler wedge is an approximation to the case of a stationary observer near a black hole horizon.
The Reissner-Nordstrom (RN) metric is

ds2 =
(r − r+)(r − r−)

r2
dt2 − r2

(r − r+)(r − r−)
dr2 − r2dΩ2, (5.1)

for r± = m ±
√
m2 − q2 the outer and inner horizons. We consider the near horizon condition with

r = r+ + ρ and define r+ − r− = ε so that ε >> ρ. The RN metric is for gtt to O(ρ) approximately

ds2 =
ερ

r2
+

dt2 −
r2
+

ερ
dρ2 − r2dΩ2. (5.2)

The proper distance for dt = 0 = dΩ is σ = 2r+

√
ρ
ε and is used in the reduced metric with dΩ = 0

to derive the Rindler wedge metric, based on [5],

ds2 =
4ε2σ2

r4
+

dt2 − dσ2. (5.3)

For r+ = ε = 2m this reduces to the Rindler metric for the close horizon case with the Schwarzschild
metric. The Christoffel symbols are

Γσtt = − 4ε2σ

r4
+

, Γttσ =
1

σ
, (5.4)

and the σ geodesic equation for dσ
dt = 0 is

d2σ

dt2
=

4ε2σ

r4
+

. (5.5)

The potential is then V (σ) = − ε2σ2

8r4+
and the force is F = − ∂σV (σ).

A scalar wave in the Rindler wedge, where we restore the other coordinates as x and y has the
Lagrangian

L =

(
∂φ

∂τ

)2

− σ2

(
∂φ

∂σ

)2

− σ2

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
]
, (5.6)

for τ = t/4m. The transverse directions have the eigenvalue ∂iφ − iλφ. The Lagrangian is then

L = (∂τφ)
2 − σ2 (∂σφ)

2 − λ2σ2φ2. The potential V (φ) = λ2σ2φ2 is a harmonic oscillator potential,
and a small region near the horizon the probe state is of this form. The distance is σ = g−1, and in line
with the above this acceleration is defined as g = g1 + τg2. The changing acceleration corresponds to a
time dependent decrease to the distance to the horizon σ = 1/ (g1 + τg2). The increased acceleration
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corresponds to a reduced σ, and just as waves in a cavity will become shorter in wavelength as the cavity
dimensions are reduced so too we have k increasing. The Lagrangian used in equation 19 is

(−g)−1/2∂µ

(
(−g)1/2gµν∂νφ

)
− ∂φV = 0, (5.7)

which is the scalar wave equation 31. The field φ rises and declines as it responds to the vacuum in the
increasingly accelerated frame. While k ∝ g1 + τg2 and dk/dτ > 0 the amplitude of the probe field
declines to zero with time. This prevents a divergence of the probe field in the limit it approaches the
horizon.

This approach of a particle to the horizon on an accelerated frame increases the acceleration which

reaches a maximum at the stretched horizon at d = `s = g
−1/4
s `p gives the acceleration g = g

−1/4
s 5.6×

1054cm/s2. At this extreme acceleration the probe wave function for the particle is finite and the probe
has reached the stretched horizon. The radial dimension at this limit is of no consequence to the wave/field
dynamics of a particle or probe. The field is reduced to three dimensions of 2-space plus time. In this
setting the field is reduced to anyon statistics. If there are two fields with some charge if their positions
are permuted on a path γ there is an overall phase change given by their vector potential θ =

∫
γ
A

so that an interchange is |φφ′〉 = eiθ|φ′φ〉. This interchange may be interpreted according to the Jones
polynomial, braid groups and knots. Anyons may also be a route to superconductivity [7], where it is also
known that the event horizon of a black hole has a conductivity that permits the surface charge density
on the stretched horizon to exponentially dilute across the horizon. The stretched horizon is known to
be a classical conductor of charge. In the limit this probe is lowered to the stretched horizon from an
accelerated frame this conductor may become superconducting. The increase in the acceleration needed
to lower a probe to the stretched horizon is then an RG flow which leads to a phase change in the system.

It is worth noting that up to this point no new physics has been introduced. Everything from the
changing acceleration of a frame to the black hole is based on standard accepted physics. The conclusions
do however indicate there may be new physics, in particular with respect to a phase transition on the
horizon boundary.

6 Topological Symmetry of Phase

The approach to the horizon of the black hole d → 0, or equivalently the divergent increase in acceleration
g = c2/d, increases the number of degrees of freedom available to the probe up to a saturation point
which then declines. As the probe becomes close to the event horizon at some point the number of modes
available decreases until there are only string or Planck length modes available. The physics has entered
into some for phase change. At a distance d far from the horizon with d >> λIR, for λIR the long
wavelength cut off of the theory, there are many modes available with the UV modes suppressed. As
the probe approaches the BH more UV modes are available until they appear to the exclusion of longer
IR wavelength modes. The physics transitions from a Boltzmann type of statistics to a coherent state
system.

The temperature of this system approaches the Hagedorn or Planck temperature and the number of
modes available declines and the system becomes coherent. These modes are entangled with the black
hole, and this entanglement is strongest at shorter distances. These states are in a quantum entanglement
with the black hole at a short range, and where these states exhibit symmetry of spacetime/gauge fields,
in the sense of a holography. These states are a large ground state degeneracy for a quantized non-
Abelian gauge field with geometric phases for the degenerate states. This topological order occurs for
a zero entropy situation, which for spacetime physics corresponds to the Planck temperature, instead of
zero temperature. If the symmetry of the holonomy or geometric phase is corresponds to a particular
phase of the system and topological order this is similar to a symmetry protected topological order[8].

The black hole or thermal event horizon describes the Unruh-Hawking vacuum for each value of the
acceleration parameter g such that Γ = g1 + g2

g1
sinh2(g1τ)/τ corresponds to a set of vacua. Each of these
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vacua are accompanied by a thermal bath of bosons. These bosons are often identified as gauge bosons,
such as photons, and they obey some gauge symmetry. The set of vacua defined by Γ for this gauge
field have the same symmetry and the set of states for each vacua are then continuously deformed into
each other. The states in one vacua are then adiabatically adjusted into another by small changes in the
acceleration parameter, which maintains the same gauge symmetry in each vacua. The statistics derived
from the probe field do indicate however that the quantum statistics of the thermal bath of bosons changes
as the probe is lowered very closely to the black hole horizon. Hence the continuous change invacua results
in a phase transition of the system. The phase transition is similar to a Bose-Einstein condensate, or for
a massless gauge boson with the transistion to overcomplete coherent states of a laser.

The probe field could only preserve its phase if the boson field is of another symmetry close to the
horizon. The constriction in the number of degrees of freedom as d → 0 available to the probe can
only be reversed if there is a manner in which degrees of freedom can be combined to define new ones.
The approach of the probe field to the horizon is a selection process which reduces the number of degrees
of freedom available to the probe as this distance approaches the string or Planck scale. The phase of
the system is preserved as the probe selects a set of states with a short range entanglement with the
black hole. These states are in a particular quantum phase associated with this entanglement. Short
ranged entangled states have trivial topological orders and the symmetry then protects the topological
order of the system. If the number of degrees of freedom remains large near the horizon this means
that the degrees of freedom the probe field measures near the horizon in the trivial topological order are
transformed into an additional set of degrees of freedom. The symmetry of the system must be broken.

The restriction of this system to near the horizon is a highly boosted system. The dynamics is then
largely in the space normal to the direction of the boost. The probe field is in each instance of time in
a high Lorentz γ frame. The four momentum P = (p, pz, E) with pz in the direction of the boost, is
then

P 2 = m2 = − p2
z − p2 + E2 (6.1)

so the energy is

E =
√
p2
z + p2 +− m2 = pz

√
1 +

p2

p2
z

+
m2

p2
z

' pz +
p2

2pz
+

m2

2pz
, (6.2)

where the last step is permitted because pz >> p. This leads to the 2 − 1 spacetime Hamiltonian
H′ = 1

2p
2 + 1

2m
2. The states are then in this reduced spacetime and non-trivial 2 + 1D SPT states

carry non-trival statistics [9]and fractional quantum numbers [10] of the symmetry group.
SPT states have short range entanglements, which mean there is by their nature some scaling associ-

ated with them. This is something found in a correspondence between entangled states and the occurrence
of event horizons [11]. This is a variant of gauge/gravity duality or holography. The equivalence between
a conformal field theory and the asymptotic anti-de Sitter spacetime for large N is inidcates how grav-
itation may be quantized in a nonperturbative manner according to a quantum field theory [12]. The
emergence of gravity may then be argued to emerge from entangled states or degrees of freedom of a
quantum system, or a gauge theory, which is dual to an AdS spacetime. Raamsdonk illlustrated how
state entanglement decreased by a variable parameter equivalent to an increasing proper distance between
different regions of spacetime.

Suppose there exist two HIlbert spaces that compose a system with H = H1 ⊗ H2 with states on
H of the form |ψ〉 =

∑
i |ci|2|ψ1

i 〉 ⊗ |ψ2
i 〉. Each of these Hilbert spaces is an identical copy of the QFT.

The density matrix

ρij = |ψ〉〈ψ| =
∑
i

|ci|2|cj |2|ψ1
i 〉 ⊗ |ψ2

i 〉〈ψ1
i | ⊗ 〈ψ2

i | (6.3)

for |ci|2 = e−Eiβ/2 gives a thermal density matrix with a trace over one Hilbert space. Quantum mutual
information of operators in region H1 and H2 is given by I(1, 2) ∼ 〈O1O2〉. The entanglement may
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be reduced with the introduction of a distance measure d(x1, x2) such that 〈O1O2〉 ∼ e−d(x1,x2). The
tuning of the entanglement is then dependent upon this metric element which an easily be interpreted as
a metric for a manifold. This connection is made firmer when it is noted that the thermal density matrix
is identical to one for the AdS black hole.

The distance dependency on this entanglement has the properties of SPT states. The probe field that
approaches the horizon will detect states in a different quantum phase as the local entanglement between
states near the horizon and the black hole are “turned on.
rq’ The probe field further from the horizon detects a thermal distribution of bosons that are statistically
uncorrelated, but which have the same density matrix. The entangled state density matrix |ψ〉〈ψ| under
the trace ∑

e−Eβ |ψ1〉〈ψ1| → Schwarzschild BH (6.4)

so the horizon and black hole state is ultimately constructed from entanglements, and where the symmetry
of the underlying interaction is what preserves the topological order of the system.

The SPT is an energy gapped phase at zero temperature, which in our case is near the Hagedorn
temperature, where the heat capacity of event horizons is negative. The SPT states with a symmetry
given by a group G have topological orders given by the cohomology H2(G. U(1)). For the case d = 2
the 2-space plus ime model with the Euclideanized G = SO(3) gives the 2 + 1 spin Hall effect and
the time revese symmetry group Z. The projective representation of this group is found by the quotient
with the normalizer of that group PG = G/N with the map π : G = PG that defines a bundle of lift
elements. These elements λ obey for g ∈ G the rule λ(g, g′) = σ(g, g′)λ(g)λ(g), where σ(g, g′) is a
Schur multiplier. The projective representation of the group “mods out
rq’ the action of this normalizer. This is a cocycle in the cohomology H2(G, N) with the normalizer
N = U(1).

The Schur multiplier is a way in which the projective realization of a group can be represented
according to the second cohomology that is an abelian group that defines a covering or line bundle. The
projective representation is a homomorphism into the projective linear group PGL(n, K),specifically for
K = R or C, and for n = 2. A field F is mapped into K, the group C and B have the sequence
1 → F → C → G → 1 for C the centeral of G and this sequence is the central extension of the group
G. The following diagram ensues

F → C → G
↓ ↓ ↓
K → GL(n, K) → PGL(n, K)

(6.5)

The group SO(2, 1) ∼ SU(1, 1) is homomorphic to SL(2, R) × SL(2, R)/Z2. The linear fractional
group SL(2, Z) the gives the braid group as

B3 → PSL(2, Z)
↓ ↓

SL(2, R) → PSL(2, R)
(6.6)

The braid group is then the central extension of the linear fractional or modular group PSL(2, Z). The
braid group B3 then contains a center which under this map gives PSL(2, Z) ' B3/C. This center is
under the correspondence between C and G = B3 with the normalizer N = U(1) projective realization
PSL(2, R) = SL(2, R)/U(1) a set of elements that defines the modular group as a projective realization
of the braid group. This is easily seen. For the elementary braid group elements σ1 and σ2, σ2

i = 1, we
may define x = σ1σ2σ1 and y = σ1σ2, with z = x2 = y3, z ∈ C is an element of the center with
σizσ

−1
i = z. The center of the braid group is given by correspondence between R and Z and the special

linear group and the modular group of factional transformations.
The discrete group structure is a Kleinian system. With the AdS spacetime this discrete group

constructs a conformal completion on the manifold [13]. The action constructed by the discrete system
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is in the continuum limit the Wess-Zumino-Witten Lagrangian [7][14] as well. A theory of this variety
should be completely compatible with supergravity theories and the gravity/gauge duality.

7 Physical Quantum Gravity

Physically this is connected with the quantum mechanics of event horizons. The range of entanglement
is near the event horizon and its “strength” is determined by distance from the event horizon. The
symmetry protected topological order occurs when the horizon is not a “sharp” geometric object. The
event horizon is quantum uncertain.

The uncertainty with the event horizon goes back to the Bohr-Einstein debate[15]. Einstein argued
that a box on a weight scale could be used to circumvent the uncertainty principle. The argument assumes
there is a box with a hole in one wall covered by a shutter which may be opened and closed by a clock
mechanism inside the box. Radiation in the box would add to the weight of the box. The box would be
weighed and at a given moment the clock would open the shutter allowing a single photon of radiation to
escape. The box could then be re-weighed, the difference between the two weights telling us the amount
of energy that escaped using the formula E = mc2. Under the uncertainty principle it is not possible to
obtain an exact measurement of the energy of the released photon and the time at which it was released.
Einstein’s experiment was designed to show such exact measurements were possible, the clock measuring
the time of release of the energy and the weighing of the box disclosing the amount of energy involved.
Bohr however realized that the gravity field is involved. A change in potential ∆Φ = g∆h is such there
is an uncertainty in the height of the box on the scale and ∆h∆p = ~/2 for ∆p ∼ mc. This defeated
Einstein’s attempt to work around the uncertainty principle.

The black hole may serve as the box and the uncertainty is quantum tunneling of particles out of the
black hole. The Schwarzschild metric element gtt = 1 − 2Φ/c2, for Φ = GM/r, is defined for a mass
contained in a radius Rs = 2GM/c2. The uncertainty in the mass of the black hole is then a fluctuation
in the metric element

∆gtt =
2G∆M

rc2
=

∆Rs
r

(7.1)

The gravity potential fluctuates with an uncertainty ∆Φ∆t = ~/2, and for r = Rs we have that

∆R∆t = G

¯
c2,(7.2)

which gives a space-time complementary fluctuation of the radius (horizon radius) and time. This

is the radius uncertainty as seen by an exterior observer associated with an uncertainty in time. The
term G~/c2 is a space-time measure of the area of the event horizon Planck units.

The fuzzing out of the event horizon by quantum fluctuations according to a noncommutative ge-
ometry is similar to the sort of null geometry twistor theory provides. A set of null geodesics satisfy
a coincidence condition. The pair of spinors ωA and πA′ define a point in Minkowsi spacetime with
ω(x)a = ωA + ixAA′πA′, for xµ = σµAA′x

AA′. The twistor Zα = (ωA, πA′) define a norm 2s = ZαZ̄α
= ωaπ̄A + ω̄A′πA′, where for s = 0 the twistor is null. The twistor norm is an invariant of the
group SU(2, 2) →4−1

cover C(3, 1), where C(3, 1) is the conformal group of compactified Minkowski
spacetimes[16]. The set of rays defines the space CP3, which is projective twistor space and CT = C4.
The projective twistor space is the identified with complexified Minkowski spacetime in a double fibration

CT ←µ F 1,2(T) ν → M (7.3)

where the construction is with flag manifolds F 1(T) = CP3 and F 2(T) = G4,2(C), where the latter is the
compact complex Minkowki spacetime. The symmetry group SU(2, 2) ' SO(4, 2) is the isometry group
for the anti-de Sitter spacetime AdS5. The boundary of the AdS5 is the Einstein space ∂AdS5 = E4,
or in the compact complex form is G4,2(C). This data is contained in the double fibration of the flag
manifold.
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The coincidence equation ωA = xAA′πA′ contains the spinor in matrix form with components

xµ 7→ xAA′ =
1√
2

(
t + z x + iy
x − iy t − z

)
(7.4)

The frame is boosted in the case above so the momentum along the direction of boost is removed. By
the Lorentz contraction of lengths along that direction, along z, we may then consider z → 0 and
interchange the meaning of time and the z-direction with

xAA′3 =
1√
2

(
t x + iy

x − iy −t

)
. (7.5)

The spinors define the SU(2) → SU(1, 1), with the hyperbolic form occurring with t → it.
This reduction from SU(2, 2) → SU(1, 1) reduces the anti-de Sitter isometry group to SL(2, R)

for AdS2. The reduction from four to three dimensions with Minkowski spacetime induces the map
AdS5 → AdS2. The correspondence between the braid group B3 and SL(2, Z) in the lower dimensional
case similarly carries in the AdS5 case. In the higher dimensional case the discrete structure will be more
complex.

The STP approach to quantum gravity leads into a homotopy realizations of quantum physics[17].
There have been recent developments along these lines by Isham [18] and others that connect category
theory with a deeper foundation to physics and cosmology. This may mean that topology as the basis of
physics is in its greatest generality is a category theory of types. The additional prospect exists that that
foundations of mathematics is a homotopy type theory (HOTT) with connections to category theory[19].
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