### Article

## **Einstein Spaces of Class One**

J. H. Caltenco, J. López-Bonilla<sup>\*</sup> & A. Zaldívar-Sandoval

ESIME-Zacatenco, IPN, Edif. 5, 1er. Piso, Col. Lindavista CP 07738, Mexico city

### Abstract

The Einstein spaces  $R_3$  and  $R_4$  are umbilical when they are locally and isometrically embedded (class one) into a Riemannian space of constant curvature is proved.

Keywords: Embedding of 4-spaces of Riemann; Gauss-Codazzi equations.

## **1. Introduction**

Here we deal with Riemannian spaces of three and four dimensions of Einstein type, that is, those where the Ricci tensor  $R_{ac}$  is proportional to the metric tensor  $g_{ac}$ :

$$R_{jk} = \frac{R}{n} g_{jk}, \quad n = 3, 4$$
 (1)

If these spaces are locally and isometrically embedded into another (n+1)-dimensional Riemannian space of constant curvature *K*, then the Gauss-Codazzi equations are verified [1-6]:

$$R_{ijrm} - K(g_{ir}g_{jm} - g_{im}g_{jr}) = \varepsilon (b_{ir}b_{jm} - b_{im}b_{jr}), \qquad (2)$$

$$b_{ij;r} - b_{ir;j} = 0,$$
 (3)

where  $\varepsilon \pm 1$ ,  $R_{acij}$  is the Riemann tensor of  $R_n$ ,  $b_{ic} = b_{ci}$  is the corresponding second fundamental form and ; *r* means the covariant derivative. In Sec. 2 we shall use expressions obtained in [7-11] to show that (1, 2) imply the umbilical character of  $R_n$ , that is:

$$b_{jc} = \frac{b}{n} g_{jc}, \qquad b \equiv b_r^r, \qquad n = 3, 4.$$
 (4)

In fact, (4) is correct for every *n*, which may be seen [12] by a careful analysis of the eigenvalue problem for  $b_{jr}$ . By substitution of (4) into (2) one can deduce the relation:

<sup>&</sup>lt;sup>\*</sup> Correspondence: J. López-Bonilla, ESIME-Zacatenco-IPN, Edif. 5, Col. Lindavista CP 07738, México DF E-mail: <u>ilopezb@ipn.mx</u>

$$R_{ijrm} = \overline{K} (g_{ir}g_{jm} - g_{im}g_{jr}), \qquad \overline{K} = K + \frac{\varepsilon b^2}{n^2}$$
(5)

So, the treated  $R_n$ , n = 3,4 also turns to be a space of constant gaussian curvature  $\overline{K}$ .

# 2. Umbilical property of $R_n$ , n = 3, 4 of Einstein space embedded into (n+1) - space of constant curvature

Equation (2) was studied in [8] only for the case K = 0, however, we can extend the use of the same scheme to our main analysis without major difficulty; when  $K \neq 0$  we obtain the relation:

$$pb_{ij} = \frac{R}{6} + \frac{1}{6}R_i^m R_{mj} - \frac{1}{3}R_{imrj}R^{mr} - \frac{1}{12}R_{imrc}R_j^{mrc} + \frac{n(n-1)}{6}KR_{ij} + \frac{K}{6}[(n-3)R + n(n-1)(n-2)K]g_{ij},$$
(6)

with

$$p = \frac{\varepsilon}{3} b^{rc} G_{rc} - \frac{\varepsilon K}{6} (n-1)(n-2)b,$$
(7)

where  $R = R_{j}^{j}$  is the scalar curvature and  $G_{ij} = R_{ij} - \frac{R}{2}g_{ij}$  is the Einstein tensor of  $R_n$ .

It is now convenient to split our analysis in two directions:

### a). Case n = 3

Here we shall see the condition that implies the umbilical character of  $R_3$ . It is widely known [1, 2] that in three dimensions the Ricci tensor generates the Riemann tensor:

$$R_{ijrc} = R_{jr}g_{ic} + R_{ic}g_{jr} - R_{ir}g_{jc} - R_{jc}g_{ir} + \frac{R}{2}(g_{ir}g_{jc} - g_{ic}g_{jr})$$
(8)

hence the introduction of (1, 8) into (6, 7) gives (4, 5) with:

$$b^2 = -9\varepsilon(K + \frac{R}{6}) > 0, \qquad \overline{K} = -\frac{R}{6} \qquad \text{if} \quad (K + \frac{R}{6}) \neq 0$$

$$\tag{9}$$

which determines the sign of  $\varepsilon$ .

#### *b*). Case n = 4

ISSN: 2153-8301

Lanczos identities [13] reduce (6, 7) to the form [7-11, 14, 15]:

$$pb_{ij} = -\frac{1}{2}R_{ircj}G^{rc} + 2KR_{ij} + (4K^2 + \frac{KR}{6} + \frac{1}{48}K_2)g_{ij}$$
(10)

such that

$$p = \frac{\varepsilon}{3} b^{ic} G_{ic} - \varepsilon b K, \qquad K_2 = R^{*ijrc} R_{ijrc}$$
(11)

where \*R\*arjc is the double dual [2, 4, 5, 7, 13] of the Riemann tensor. By substitution of (1) into (10, 11) we obtain (4, 5) with:

$$b^{2} = -16\varepsilon(K + \frac{R}{12}) > 0, \qquad K = -\frac{R}{12}, \qquad K_{2} = -\frac{R^{2}}{6}, \qquad (12)$$

under the condition  $(K + \frac{R}{12}) \neq 0$ ; this result (12) can be seen as a generalization of the theorem

II of [16].

In this way we have showed that our relations (6, 7) give a simple proof of the umbilical character of  $R_3(R_4)$  of Einstein embedded into  $R_4(R_5)$  of constant curvature.

### References

- [1] D. Lovelock and H. Rund, *Tensors, differential forms and variational principles,* John Wiley & Sons, New York (1975)
- [2] D. Kramer, H. Stephani, M. MacCallum and E. Herlt, *Exact solutions of Einstein's field equations*, Cambridge University Press (1980)
- [3] J. López-Bonilla, H. N. Núñez-Yépez, J. M. Rivera and A. L. Salas-Brito, Acta Phys. Slovaca 46, No. 1 (1996) 87-90
- [4] J. López-Bonilla, E. Ramírez G. and J. Y. Montiel, Apeiron 13, No. 2 (2006) 196-205
- [5] P. Lam E., J. López-Bonilla and R. López-Vázquez, Transnational J. of Mathematical Analysis and Applications **1**, No. 1 (2013) 5-8
- [6] J. López-Bonilla, J. Rivera and Piscoran Laurian-Ioan, Global J. Adv. Res. Class. Mod. Geom. 3, No. 2 (2014) 130-135
- [7] R. Fuentes, J. López-Bonilla, G. Ovando and T. Matos, Gen. Rel. Grav. 21, No. 8 (1989) 777-784
- [8] G. González, J. López-Bonilla and M. A. Rosales, Pramana J. Phys. 42, No. 2 (1994) 85-88
- [9] J. López-Bonilla, J. Morales and M. Rosales, Braz. J. Phys. 24, No. 2 (1994) 522-525
- [10] J. López-Bonilla, J. M. Rivera and H. Yee M., Braz. J. Phys. 25, No. 1 (1995) 80-81
- [11] H. N. Núñez-Yépez and J. López-Bonilla, Pramana J. Phys. 46, No. 3 (1996) 219-221
- [12] H. Rund, Ann. Mat. Pura Appl. 93 (1972) 99

552

- [13] C. Lanczos, Ann. of Math. 39 (1938) 842-850
- [14] J. H. Caltenco, J. López-Bonilla and G. Ovando, J. Bangladesh Acad. Sci. 25, No. 1 (2001) 95-97
- [15] J. López-Bonilla, J. Morales and G. Ovando, Indian J. Math. 42, No. 3 (2000) 309-312
- [16] P. Szekeres, Nuovo Cim. A43 (1966) 1062-1070

553