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Gauge Field of the Self-interacting Quantum Electron

Peter Leifer 1

Abstract

It is assumed that vacuum state of the Universe contains of omnipresent “unlocated” field motions
of pure quantum degrees of freedom like spin, charge, etc., instead of quantum “elementary” particles.
Localization of the quantum states of motions reveals in the observable quantum particles, i.e. in the
lump-like self-interacting excitations of such a vacuum. These excitations arise as a back reaction of
spin and charge “fast” degrees of freedom on “slow” driving environment during “virtual measure-
ment” due to the self-interaction that leads to the appearance of the electromagnetic-like gauge fields
in the dynamical 4D spacetime.

PASC: 03.65 Pm, 03.65 Ca

1 Introduction

The localization problem is one of the main obstacles on the way of the intrinsic unification of relativity
and quantum theory. In order to get realistic nonlinear field equations with lump-like solutions one needs
use not only new primordial elements of the quantum dynamics but reformulate the most fundamental
physical principle - inertia principle. This principle seems to be broken not only in QCD but for a self-
interacting electron too. I propose a derivation of new field equations for the self-interaction electron
where affine gauge potential in CP (3) replaces the Higgs potential as an analog of the Poincaré forces
preventing the electron from the flying apart [1, 2].

There are a lot of attempts to build a model of electron as an extended compact object with finite self-
energy and discrete spectrum of mass in existing global space-time, see for example [3]. It is commonly
understood that Dirac’s equation may be applied to any fundamental fermions with the spin half. Then the
natural question arises: where rooted the difference between stable electron and unstable muons and tau-
leptons? New achievement in the “relativistic optics” with high intensity of laser field of 1022−1028W/cm2

evokes new practical interest to the nonlinear electrodynamics of the electron/muon/tauon structure (see
[5] and references therein). In this field model of the quantum electron, the spin/charge quantum degrees of
freedom (QDF) have been dissolved in the non-Abelian vector fields of the SU(4) generators corresponding
to the matrices of Dirac. Technically, the extended self-interacting quantum electron represented by the
periodic motion of QDF along closed geodesics γ obeying the equation

∇γ̇ γ̇ = 0 (1.1)

in the projective Hilbert state space CP (3). Namely, the spin/charge degrees of freedom move in the
affine gauge potential in the state space, whereas its “field-shell” in dynamical spacetime (DST) arises
as a consequence of the local conservation law of the proper energy-momentum vector field expressing
the quantum formulation of the inertia law. This conservation law leads to PDE’s whose solution give
the distribution of energy-momentum in DST that keeps the motion of spin/charge degrees of freedom
along geodesic in CP (3) [1]. The periodic motion of quantum spin/charge degrees of freedom along closed
geodesics generated by the coset transformations from G/H = SU(4)/S[U(1) × U(3)] = CP (3) will be
associated with inertial “mechanical mass” and the gauge transformations from H = S[U(1) × U(3)]
rotates closed geodesics in CP (3) as whole. These transformations will be associated with Jacobi fields
corresponding mostly to the electromagnetic energy [2].
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I use in this work the mathematical tool applied to the classical gauge forces arising in deformable
bodies [6]. The physical content is, however, quite different, if not opposite, since my aim is to find the
equations for the “shape” of “elementary” particle embedded in DST , i.e. the “field shell” of the “ele-
mentary” particle wrapping the internal QDF. The key technical approach used here is the representation
of the SU(N) generators in terms of the local ray coordinates (π1, ..., πN−1) in CP (N − 1) of unlocated
quantum state itself [10, 11].

2 Quantum self-interacting electron

In order to formulate the quantum (internal) energy-momentum conservation law in the state space, let
us discuss the local eigen-dynamics of quantum system with finite quantum degrees of freedom N . It will
be realized below in the model of self-interacting quantum electron where spin/charge degrees of freedom
in C4 have been taken into account [1]. The local dynamical variables (LDV’s) like the energy-momentum
and should be expressed in terms of the projective local coordinates πk, 1 ≤ i, k, j ≤ N − 1 of quantum
state |Ψ >= ψa|a >, 1 ≤ a ≤ N , where ψa is a homogeneous coordinate on CP (N − 1)

πi(j) =

{
ψi

ψj , if 1 ≤ i < j
ψi+1

ψj if j ≤ i < N
(2.1)

since SU(N) acts effectively only on the space of rays, i.e. on equivalent classes relative the relation of
equivalence of quantum states distanced by a non-zero complex multiplier. LDV’s will be represented by
linear combinations of SU(N) generators in local coordinates of CP (N − 1) equipped with the Fubini-
Study metric [9]

Gik∗ = [(1 +
∑
|πs|2)δik − πi

∗
πk](1 +

∑
|πs|2)−2. (2.2)

I will use the proximity between rays of quantum states dS2 = Gik∗dπ
idπk

∗
in the projective Hilbert space

CP (N − 1) as a fundamental concept instead of the spacetime distance. Dynamics of the superposition
state (π1, ..., πN−1) will be given by the Lagrangian

L = Gik∗
dπi

dτ

dπk∗

dτ
(2.3)

for dynamics of the LDV’s corresponding spin and charge of the self-interacting electron (where N =

4). Then the canonical momentum is as follows pi = dπi

dτ . Such Lagrangian leads to zeroth canonical
Hamiltonian function that corresponds to the vacuum character of dynamics of the omnipresent quantum
degrees of freedom. N2 − 1 generators of G = SU(N) may be divided in accordance with the Cartan
decomposition: [B,B] ∈ H, [B,H] ∈ B, [H,H] ∈ H. Namely, (N − 1)2 generators

Φih
∂

∂πi
+ c.c. ∈ H, 1 ≤ h ≤ (N − 1)2 (2.4)

of the isotropy group H = U(1)× U(N − 1) of some ray and 2(N − 1) generators

Φib
∂

∂πi
+ c.c. ∈ B, 1 ≤ b ≤ 2(N − 1) (2.5)

are the coset G/H = SU(N)/S[U(1)×U(N − 1)] generators realizing the breakdown of the G = SU(N)
symmetry. Here Φiσ, 1 ≤ σ ≤ N2 − 1 are the coefficient functions of the generators of the non-linear
SU(N) realization [10] as follows

Φiσ = lim
ε→0

ε−1

{
[exp(iελ̂σ)]imψ

m

[exp(iελ̂σ)]jmψm
− ψi

ψj

}
= lim
ε→0

ε−1{πi(ελ̂σ)− πi}. (2.6)
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The affine connection in CP (N−1) will be used below in the formulation of conservation laws of intrinsic
LDV’s is as follows

Γimn =
1

2
Gip

∗
(
∂Gmp∗

∂πn
+
∂Gp∗n
∂πm

) = −δ
i
mπ

n∗
+ δinπ

m∗

1 +
∑
|πs|2

. (2.7)

Its “geodesic profile” is similar to the Higgs potential but this is finite as it is depicted in Fig. 1.

Figure 1: The geodesic profile of the affine gauge potential in CP(3). Closed geodesics in the compact
totally geodesic manifold CP (3) makes all states bounded with a discrete spectrum.

Canonical energy-momentum of the relativistic electron will be expressed by the contraction of un-
known proper 4-potential Pµ = pµ − e

cA
µ and the coefficient functions Φiµ calculated for the matrices of

Dirac according (2.6), namely

pi =
dπi

dτ
=
c

~
Pµ(x)Φiµ(π). (2.8)

Such internal quantum spin/charge dynamics in CP (3) cannot be directly connected with the spacetime
dynamics since one needs to separate the Lorentz transformations from the motion of QDF in CP (3) [6].

3 Dynamical spacetime

The process of a measurement in physics should be associated with the comparison process of some dy-
namical variable with corresponding scale. Newtonian physics established invariant character of a mea-
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surement in the sense of its independence on the choice of inertial reference frame (IRF). This assumption
was formulated as the inertia principle of Galileo-Newton.

Einstein, taking into account the finite speed of light and its invariance relative choice of the IRF,
found that result of the distant measurement depend on the choice of the IRF, i.e. so-called relativis-
tic kinematics and dynamics replaced absolute character of a measurement of Newtonian mechanics.
Meanwhile, general relativity already renders global spacetime coordinates in fact in physically senseless
values.

Quantum theory brings a new kind of “relativity” – dependence of the result of a measurement on
the apparatus used for the measurement. This kind of relativity is so radical that the indeterministic
paradigm and even agnostic philosophy takes over the habitant deterministic character of predictions in
exact sciences. Deep difficulties in the “standard” QFT almost insist to try to find new invariants, in fact
a new quantum geometry based on the intrinsic properties of quantum states of the elementary particles
[10]. Two most principle differences between fundamental approaches of the “standard” QFT and the
real situation in quantum physics are as follow:

a). Attempt to divide the action variables into spacetime variables xµ and energy-momentum Pµ as
in the phase argument of the plane wave φ = 1

~x
µPµ is not accessible since internal degrees of freedom

make generally the spacetime variable state-dependable.
b). Main experimental method of the investigation in high energy physics is scattering accelerated

quantum particles. However all attempts to rich deep zone of the quantum particle with help of the
outer “probe” particles leads to creation of new particles as a consequence of new quantum degrees of
freedom de-freezing. But stable quantum particles and even unstable particles demonstrate temporal
classical behavior in relatively weak external fields. Therefore their own field structure “sweeps” all zone
occupied by the quantum particle without dramatic multiple particle creations. Therefore, it is reasonable
to assume that (internal) quantum degrees of freedom of quantum particle forming unlocated quantum
state may be “wrapped” in the “field shell” that distributed in DST spanned on state-depended energy-
momentum. The general idea is that the local DST arises in a cross-section of the frame fiber bundle due
to embedding of the state-dependent Lorentz frame. Thereby, we would like to save ordinary spacetime
four dimension and local Lorenzian character of the metric.

Quantum geometry establishes a new principle of “super-relativity”, i.e. relativity to the choice of the
unlocated quantum state refers to the pure quantum degrees of freedom. This principle makes accent on
the objective invariant nature of the unlocated quantum states and operates with the notion of “existence”
instead of “observation”. Namely, existence associated with self-interaction or “self-measurement”, i.e.
expression of some quantum dynamical variable in the terms of quantum state itself without any refer-
ence to external apparatus. Thereby the plaque problem of the division of “classical” and “quantum”
disappears ab initial. More technically all mentioned above means that new world quantum geometry
appears instead of so-called quantum cosmology developed last time. Geometry of the projective Hilbert
space takes the place of the fundamental geometry where gauge dynamics of the quantum degrees of free-
dom defines the basic properties of the “elementary” quantum particles. The habitant global omnipresent
spacetime should be replaced by the specific section of the fiber bundle over CP (N−1). In the framework
of the affine gauge dynamics the term “existence” esquires the exact mathematical sense in relation to
solution stability of quasi-linear PDE’s expressing conservation of such fundamental dynamical variables
as energy-momentum [1, 2]

The separation of the spacetime coordinates from pure quantum degrees of freedom is a serious
problem since these coordinates are now state-dependent values too. Such separation may be associated
with state-dependent Lorentz transformations of the proper energy-momentum. This fact leads to the new
construction of dynamical spacetime. Namely, the spacetime distance occurs as a result of unholonomy
of the state space of the unlocated quantum degrees of freedom. In this picture the global spacetime
coordinates have no physical meaning at all. Only local coordinates relative state-dependent Lorentz
reference frames may be defined due to more or less complicated operational procedure. This procedure
is based on the analysis of the “virtual quantum measurement” in the quantum state space.

The dynamical spacetime (DST) is pure local construction built for description of energy-momentum
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distribution which I called the “field-shell” of the quantum particles. This spacetime is non-distinguishable
from state-dependent Lorentz frame and moves together with it in a cross-section of the principle fiber
bundle over CP (N − 1). There are two times in this theory. One time is the ordinary Einstein’s time in
the DST. The second one is the “quantum proper time” that serves as a measure of the distance between
two quantum states in the base state manifold CP (N − 1) expressed in seconds. I will use anywhere
symbol “t” for the Einstein time and the symbol “τ” for the quantum proper time.

Since there is no a possibility to use classical physical reference frame comprising usual clock and solid
scales on the deep quantum level, I will use the “field frame” from the four components of the vector field of
the proper energy-momentum Pµ = (~ω

c , ~~k) instead. This means that the period T and the wave length
λ of the oscillations associating with an electron’s field are identified with flexible (state-dependent) scales
in the DST. Thereby, the local Lorentz “field frame” is in fact the 4-momentum tetrad whose components
may be locally (in CP (3)) adjusted by state dependent “quantum boosts” and “quantum rotations”.

It is convenient to take Lorentz transformations in the following form

ct′ = ct+ (~x~aQ)δτ
~x′ = ~x+ ct~aQδτ + (~ωQ × ~x)δτ (3.1)

where I put for the parameters of quantum acceleration and rotation the definitions ~aQ = (a1/c, a2/c, a3/c),
~ωQ = (ω1, ω2, ω3) [7] in order to have for the “proper quantum time” τ the physical dimension of time.
The expression for the “4-velocity” V µ is as follows

V µQ =
δxµ

δτ
= (~x~aQ, ct~aQ + ~ωQ × ~x). (3.2)

The coordinates xµ of an imaging point in dynamical spacetime serve here merely for the parametrization
of the energy-momentum distribution in the “field shell” described by quasi-linear field equations [1] that
will be derived below. The embedding Lorentz transformation into isotropy group H = S[U(1)×U(N−1)]
will be discussed later since state-dependent parameters ~aQ and ~ωQ may be derived during the lift of the
characteristics of the quasi-linear PDE’s into the frame fiber bundle over CP (3).

The conservation law of the energy-momentum vector field in CP (3) during inertial evolution will be
expressed by the equation of the affine parallel transport

δpi

δτ
=
c

~
δ[Pµ(x)Φiµ(π)]

δτ
= 0, (3.3)

which is equivalent to the following system of four coupled quasi-linear PDE’s for the dynamical spacetime
distribution of the energy-momentum “field-shell” of the quantum state

V µQ (
∂P ν

∂xµ
+ ΓνµλP

λ) = − c
~

(
∂Φnµ(π)

∂πn
+ ΓmmnΦnµ(π))P νPµ, (3.4)

and ordinary differential equations for relative amplitudes giving in fact the definition of the proper
energy-momentum Pµ from (2.8). These equations serve as the equations of characteristics for the linear
“super-Dirac” equation

i{~
c
V µQ

∂Ψ

∂xµ
+

~
c

[−V µQΓνµλP
λ − c

~
(
∂Φnµ(π)

∂πn
+ ΓmmnΦnµ(π))P νPµ]

∂Ψ

∂P ν

+PµΦiµ(π)
∂Ψ

∂πi
+ c.c.} = mcΨ (3.5)

that equivalent to the ODE

i~
dΨ

dτ
= mc2Ψ (3.6)

for single total state function Ψ(xµ, Pµ, πi) of self-interacting quantum electron “cum location” moving
in DST like free material point with the rest mass m.
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The system of quasi-liner PDE’s (3.4) following from the conservation law has been shortly discussed
under strong simplification assumptions [1]. In order to provide integration for self-consistent solutions
one needs to find “quantum boosts” ~aQ and “quantum rotations” ~ωQ involved in the “four velocity” V µQ .
This leads to nonlinearity of the “quantum Lorentz transformation”. We will find these parameters from
the system of the characteristic equations for dP ν

dτ from (3.4). Namely, one uses

dP ν

dτ
= Ωνµ(x, P, π)Pµ, (3.7)

where

Ωνµ =


0 a1 a2 a3

a1 0 −ω3 ω2

a2 ω3 0 −ω1

a3 −ω2 ω1 0

 (3.8)

and, therefore,

Ωνµ(x, P, π)Pµ = −V µQΓνµλP
λ − c

~
(
∂Φnµ(π)

∂πn
+ ΓmmnΦnµ(π))P νPµ. (3.9)

Changing the silent index and the cancelation of Pλ gives the system of algebraic equations for quantum
boosts ~aQ and quantum rotations ~ωQ

Ωνλ(x, P, π) = −V µQΓνµλ −
c

~
(
∂Φnλ(π)

∂πn
+ ΓmmnΦnλ(π))P ν . (3.10)

Their solutions gives quantum proper frequencies and quantum Coriolis-like accelerations of the co-moving
Lorentz reference frame

aα = cLα
~±

√
~2 + 4P 0~(L1x+ L2y + L3z)

2~(L1x+ L2y + L3z)

ωα =
cεβαγLβP

γ

~(1 + a1x+a2y+a3z
c )

. (3.11)

Hence, one has a physically reasonable behavior of “quantum Lorentz parameters” ~aQ and ~ωQ since they
have finite limits at the origin of the Lorentz frame r = 0

aα(0) = lim
r→0

aα =
−cLαP 0

~

ωα(0) = lim
r→0

ωα =
cεβαγLβP

γ

~
(3.12)

under the choice of the sign “ − ” in the expression for aα, and in the remote zone at the limit r → ∞
they are as follows

aα(∞) = lim
r→∞

aα = 0

ωα(∞) = lim
r→∞

ωα = 0. (3.13)

Here Lλ =
∂Φnλ(π)
∂πn + ΓmmnΦnλ(π) is the divergency in CP (3) of the vector field of the energy-momentum

generator and it was assumed that Γνµλ is the DST connection whose components coincide with boost
and rotation instant parameters of the accelerated Lorentz tetrad [7].

The theory of the quasi-linear PDE’s (3.4) is very well known [8]. It is equivalent to the system of the
ordinary differential equations in symmetric form

dxµ

Ωµν (x, P, π)xν
=

dPµ

Ωµν (x, P, π)P ν
=

~dπi

cPµΦiµ(π)
= i

~dΨ

mc2Ψ
= dτ (3.14)
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Two independent first integrals may be found easily from the integrable combinations

d(xµx
µ)

dτ
= 2Ωµνxµx

ν = 0; xµx
µ = s2;

d(PµP
µ)

dτ
= 2ΩµνPµP

ν = 0; PµP
µ = m2c2, (3.15)

using the equality

Ωµνx
νxµ = Ωρνx

νgρσg
σµxµ = Ωσνx

νxσ = 0. (3.16)

Equations (3.4) for energy-momentum Pσ we can rewrite now in more convenient form

Ωµνx
ν ∂P

σ

∂xµ
− ΩσνP

ν = 0. (3.17)

This is complicated quasi-linear PDE’s system and the general solution is unknown but it is possible to
find its partial solution. Namely,

Pµ(x) = C1x
µ + C2x

µf(xµxµ) (3.18)

where C1, C2 are arbitrary constants and f(xµxµ) is any analytic function of the square of the interval
s2 = xµxµ, say, finite non-singular function f(xµxµ) = exp(−s2). Notice, the first term is the pure gauge

field. It is interesting that in general the four-gradient of the scalar function Gµ(x) = ∂φ(x)
∂xµ is not a

solution.
Found solutions describe the complex-value 4-potentials (energy-momentum) that represents funda-

mental fermion in complex-value coordinates. It is an example of the relativistic quantum theory with the
arbitrary function f(s2) mentioned by Feynman [12]. Stationary points of the system of characteristics
equations (2.15) have been found too [13]. Their explicit expression in terms of divergences of the SU(4)
generators fields Lµ presents Coulomb-like 4-potentials.

4 Finite self-energy of the electron with scalar vacuum

The old problem of the divergency of the self-energy in classical and quantum area is one of the main
obstacle on the way of the consistent quantum theory of “elementary” quantum particles. One of the
interesting classical nonlinear electrodynamics was proposed by Born and Infeld that got a modern devel-
opment in different directions (see [5] and references therein). I would like to discuss possible quantum
model describing local (now in DST) dynamics of the self-interacting electron where relativistic scalar
field f(xµxµ) included in the partial solution of (3.17) seeking the finite proper energy-momentum of the
electron.

The partial solution (3.17) contains arbitrary analytic function of the relativistic interval. The simplest
assumption about the nature of this scalar field is that this is massive scalar field described by the
ordinary Klein-Gordon equation with appropriate boundary conditions for the proper energy-momentum
Pµ. Thereby one assumes investigate lump solution of such equation. The simple 2D analog is well known
membrane modes [14] or more complicated 3D analog of the Wolker magneto-static modes [15]. Here
we have more complicated dynamics of the ball of scalar field where dAlembertian corresponding to the
metric tensor in the DST takes the place of the role of the permeability of a magnetic media. I postponed
the analysis of this dynamics for a future work since for me it is interesting merely “Lorentz-radial” scalar
field. Therefore, it is natural to use Klein-Gordon equation in the Lommel form

d2f

ds2
+

3

s

df

ds
+
m2c2

~2
f = 0. (4.1)
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This equation was widely used in the Euclidian regime in the problem the metastable vacuum decay, see
for example [16]. I will assume that the scalar field f(xµxµ) occupies all electron’s volume. If the classical

radius of an electron r0 = e2

mc2 is taken as the scale of the spacetime distance then (4.1) takes the form

d2f

dρ2
+

3

ρ

df

dρ
+ α2f = 0, (4.2)

where dimensionless distance is ρ = s
r0

and α = e2

~c is the fine structure constant [17].
The general solution of this equation will be expressed in Bessel functions

f(ρ) = c1J1(
αρ√

2
)ρ−1 + c2Y1(

αρ√
2

)ρ−1. (4.3)

I put c2 = 0 in order to avoid singularity on the light cone. But it is easy to check that f(ρ) = C1J1( αρ√
2
)ρ−1

does not satisfy realistic boundary conditions

PµP
µ = m2c2 if s2 = xµxµ = 0. (4.4)

In order to find the scalar field capable to bring acceptable form of the proper energy-momentum I will
use the additive form of the trial solution

Pµ = xµ[C1 + C2(ρn + J1(
αρ√

2
)ρ−1]. (4.5)

I found that the boundary conditions will be satisfied if n = −1, hence I put C2 = mc, and finally

Pµ = xµ[C1 +mc(ρ−1 + J1(
αρ√

2
)ρ−1]. (4.6)

Removing the pure gauge field C1x
µ, one gets the the electron’s energy plus internally generated scalar

potential which I wrote as follows

P 0 = mc2
1 + J1(αct√

2

√
1− β2)

e
√

1− β2
, (4.7)

assuming here β2 = r2

c2t2 merely with the aim of the estimation of the proximity to the light cone. Thence
the time t may serve as the distance from the origin of the electron. In order to estimate physically realistic
values of the argument of Bessel function one needs return from the dimensionless ct to the physically

dimensional values as follows: αct → e2

mc2
mc
~ ct

mc2

e2 = ctmc~ = L
λC

= L
2.43×10−12m . This dependence is

depicted in Fig.2.

One sees that this potential of the electron has explicit non-monotonic dependence on the distance.
This looks like integrally represented the vacuum polarization due to pairs creation-annihilation. I took
few points of the maxima and, using “CurveFitting” procedure of the Maple 15, found that the envelope
of these maxima has the form f(x) = Ax+B

ax2+bx+c , i.e. it is close “in average” to the Coulomb potential. The

deviation from the Coulomb’s Law in the form 1
r2+q gave q ≤ (2.7±3.1)×10−16, alternatively the limit on

the photon rest mass being mγ ≤ 1.6× 10−47 g [18]. But all methods of investigation mentioned in this
report are macroscopic and hence the “ripple” of the potential could not be found. But probably we have
so complicated form of the potential since the scalar model (4.1) is too simple! On the the other hand
this result may be treated as confirmation of the initial intuitive de Broglie hypothesis about electron’s
structure: “Moreover, what must we understand by the interior of a parcel of energy? An electron is for
us the archetype of isolated parcel of energy, which we believe, perhaps incorrectly, to know well; but, by
received wisdom, the energy of an electron is spread over all space with a strong concentration in a very
small region, but otherwise whose properties are very poorly known.” [19]
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Figure 2: The scalar potential of the moving charge with the velocity v=c/100. Dimensionless argument
of the Bessel function is given in the scale of the Compton wavelength. I put for simplicity m=c=e=1.

Now one may calculate electric and magnetic fields around electron and, after all, the density of the
electric field. I avoid to show elementary formulas for the components of electric and magnetic field but
provide instead their 3d pictures, see Figures 3, 4. These fields are singular free and similar to classical
field of a pointwise charged particle.

I calculated the density of the electric field of the rest charge U = ε0E
2

2 with the help of Maple 15.
Expression for E2 is as follows:

E2 =
2m2c6t2r2

e2
{c2t2

J0(α
√
c2t2−r2√

2
)2α2

(c2t2 − r2)3
− r2

J0(α
√
c2t2−r2√

2
)2α2

(c2t2 − r2)3

−4α
√

2
J0(α

√
c2t2−r2√

2
)J1(α

√
c2t2−r2√

2
)

(c2t2 − r2)5/2

−2α
√

2
J0(α

√
c2t2−r2√

2
)

(c2t2 − r2)5/2
+ 8

J1(α
√
c2t2−r2√

2
)2

(c2t2 − r2)3

+8
J1(α

√
c2t2−r2√

2
)

(c2t2 − r2)3
+

2

(c2t2 − r2)3
}. (4.8)

This function has zeroth limits E2(t = 0, r = 0) = 0;E2(t = ∞, r = ∞) = 0. The integral 4π
∫
E2r2dr

may be calculated analytically by the change of the variable r → Q =
√
c2t2 − r2 that gives the explicit

antiderivative in terms of hypergeometric and Bessel functions. I will represent here result for the first
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Figure 3: Electric field of the moving charge with the velocity v=c/2 in the positive direction of the axes
X.

integrand only

I1 = −1

5

c4t8F23([−5/2, 1/2], [−3/2, 1, 1],−Q
2α2

2 )

Q5

+
2

3

c2t6F23([−3/2, 1/2], [−1/2, 1, 1],−Q
2α2

2 )

Q3

+
1

4
α

√
2

π
[−2
√

2π(1 +Q2α2)(J0(1/2
√

2αQ))2

Qα

+4
√
πJ0(

αQ√
2

)J1(
αQ√

2
)− 2

√
2παQ(J1(

αQ√
2

))2]. (4.9)

All hypergeometric functions involved in the full antiderivative Itotal =
∑7
k=1 Ik converge anywhere

in the complex plane of Q since p = 2 < q = 3. The upper limit is zero Iupper = Itotal(Q =∞) = 0. This
antiderivative contains the time coordinate t as a parameter. The substitution Q = ct assumes the lower
limit r = 0. Formally this limit is zero for t = 0. But more realistic estimation of the charge density

under Q = ct
√

1− r2

c2t2 = 0 should be realized on the light cone r2

c2t2 = 1, i.e. t = r/c. Thus total integral

of the density with changing sign leads to finite but oscillating value. The approximate calculation gives

for t = 1700s the value U = ε0E
2

2 = 8.85 × 10−12[ C
2

Jm ]E2[ J2

C2m2 ] ≈ 81 × 10−15[ Jm3 ] the value that should
be if t = 10−8s. Probably it is another evidence of the too primitive choice of the scalar model of the
electron’s intrinsic content (4.1).

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com

Published by QuantumDream, Inc.



Prespacetime Journal | February 2015 | Volume 6 | Issue 2 | pp. 108-119 118

Leifer, P., Gauge Field of the Self-interacting Quantum Electron

Figure 4: Magnetic field of the moving charge with the velocity v=c/2 in the positive direction of the
axes X.

5 Discussion

Solitons and instantons are solutions of the very narrow class of nonlinear PDE’s. I present some attempt
to get localizable solutions of the quasi-linear PDE’s obtained for quantum self-interacting electron. This
lump-like solutions represent extended electron together with electromagnetic-like quasi-classical field
without singularities. This means that spin/charge degrees of freedom dissolved into the smooth vector
field over CP (3) replacing Dirac’s matrices may induce “from inside” the oscillating ball of the scalar
vacuum. Detailed dynamics of such modes may really lead to the fermion properties and it should be
investigated in future. This requires explicit metric structure of the DST with found quantum boosts
and rotations parameter ~aQ, ~ωQ. But a long time it is known that extended classical objects should be
quantized as fermions (see [20] and references therein).
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