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Abstract 
 

In this paper, based on previous publications, we list the equations and relationships which 

correspond to our goal - the construction of the Lorentz-invariant theory of gravitation. These 

mathematical tools will be used for the solution of specific problems in the theory of gravity, 

expounded in the following articles. 
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Abbreviations: 

LIGT - Lorentz-invariant gravitation theory;  SM - Standard Model; 

EM - electromagnetic;    NTEP - nonlinear theory of elementary particles; 

EMTM - electromagnetic theory of matter;   QED - quantum electrodynamics; 

EMTG - electromagnetic theory of gravitation; HJE – Hamilton-Jacobi equation. 

 

1.Introduction. Selection of  LIGT equations 

Recall that our goal is to find a Lorentz-invariant equation of motion of a body in the gravitational 

field of another body, comprising a force or energy of interaction of these bodies. According to 

modern concepts, this equation must contain the interaction energy of these bodies, which is the cause 

of their movement. 

 

1.1. EM theory of matter and EM theory of gravitation 

Until the 20
th
  century the attempt to explain gravity and construct a theory of gravitation was based 

on the electromagnetic theory of matter (EMTM) (Lorentz, 1916; Mie, 1925; Corry, 1999; Smeek 

and Martin, 2005; Milner, 1960a,b; etc.). This theory was called "electromagnetic theory of 

gravitation" (EMTG) (Heaviside, 1983; Lorentz, 1900; Smeek and Martin, 2005;  Wilson, 1921; 

Webster, 1912).  

 

On the basis EMTM lie the Lorentz-invariant Maxwell-Lorentz equations. As is well known 

(Lorentz, 1916;  Pauli, 1981; Becker, 1933, 1964), this theory allows to obtain all the results of the 

special theory of relativity (STR). From this it follows that EMTM  is also Lorentz-invariant (or, in 

other words,  relativistic) theory of gravitation.  
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According to the chosen axioms (Kyriakos, 2014a), we construct our theory of gravity, based on the 

experimental fact of the origin of the macrocosm objects from the microcosm objects. In theoretical 

terms, this means that the mathematical theory of the macrocosm, or, in other words,  the classical 

theory, should be based on the mathematical apparatus of the theory of the microcosm, i.e., on the 

equations of quantum theory of elementary particles. 

 

We have shown that the analogue of modern heuristic axiomatic theory of elementary particles, 

which is named Standard Model (SM), is a nonlinear theory of elementary particles (NTEP) (see 

book (Kyriakos, 2009)).  

 

We have shown that in the framework of NTEP (and, hence, of  SM) the inertial mass of the particles 

has electromagnetic origin. It follows that the classical analogue of NTEP is the electromagnetic 

theory of matter (EMTM). 

 

1.2. The Bases for selection of  LIGT equations 

From the equivalence of inertial and gravitational masses follows that the field of gravity is generated 

simultaneously with inertial mass. This means that the equations of massive elementary particles 

describe also the gravitational field equations. 

 

Electron is the simplest stable massive particle. Since, according to axioms of the LIGT, the 

gravitational field is a small part of the electric field, it can be assumed that the simplest candidate for 

the gravitational equation must be a modification of the nonlinear equation of the electron. In this 

case, the mass of this equation is the gravitational mass, i.e., the source of the gravitational field. 

 

On the other hand we have the equation of the neutral "massive photon", which we can also -  and 

with a significant reason - consider as a gravitation source equation. The following facts are the 

arguments in favor of this choice: 1) "massive photon" is the primary massive particle; 2) it is an 

electrically neutral particle;  3) fermions are not the interaction carriers in the microworld, but bosons 

are; 4) the "massive photon" equation and the lepton equation are related through operations of 

decomposition of first equation and squaring of second equation. From this it follows that the first or 

the second choice of the equations of gravitation is a matter of convenience. Hence, the "massive 

photon" equation may be an advantageous variant of the gravitation source equation. 

 

There is another indirect argument. As noted by Richard Feynman, a direct transition from the 

quantum to the classical form of the fermion equation is difficult. In the case of bosons, such a 

transition is quite simple: we can say that it is the same equation (Feynman, 1964, 21-4. The meaning 

of the wave function): 

 

In the situation in which we can have very many particles in exactly the same state, there is 

possible a new physical interpretation of the wave functions. The charge density and the 

electric current can be calculated directly from the wave functions and the wave functions 

take on a physical meaning which extends into classical, macroscopic situations. 

 

Something similar can happen with neutral particles. When we have the wave function of a 

single photon, it is the amplitude to find a photon somewhere… There is an equation for the 

photon wave function analogous to the Schrödinger equation for the electron. The photon 
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equation is just the same as Maxwell's equations for the electromagnetic field… The 

quantum physics is the same thing as the classical physics because photons are 

noninteracting Bose particles and many of them can be in the same state — as you know, 

they like to be in the same state. 

 

The first observations were on situations with many photons in the same state, and so we 

were able to discover the correct equation for a single photon by observing directly with our 

hands on a macroscopic level the nature of wave function. 

 

Below we list the basic equations of motion (for a detailed derivation see (Kyriakos, 2014b,c)) and 

for the convenience of readers, we will give the equations in different equivalent forms, which are 

commonly used in the literature. 

 

In a previous articles (Kyriakos, 2009; Kyriakos, 2014b,c), we have shown that the mass of 

elementary particles is generated due to the self-interaction of the massless particle – photon that 

takes place in a strong external electromagnetic field. 

 

2.The photon equation  

The classical EM wave equation of motion has the form: 

  022

2

2













 
c

t
,       (2.1) 

wherein c  is light velocity,    is a matrix, which contains the components of the wave function of 

an electromagnetic field HE


, . In particular for circularly polarized waves, propagating, for example, 

in y -axis: 

 




























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z

x

z

x

i

i
,  zxzx ii  ,      (2.2) 

This wave is a superposition of two waves with plane polarization: 









z

x

H

E
1   and  










x

z

H

E
2 , 

which also satisfy (2.1). Its solution is: 
) ( kyti

oe
 

;  dispersion relation: 222 kc  , where 

  is circular frequency of the wave - the wave vector. 

 

To move to the quantum equation of the EM wave quant – photon, let us produce (according to 

Planck) a quantization of frequency:   , and (according to de Broglie) a quantization of the 

wave vector 

pk   (where  is energy and p


 is momentum of the wave, respectively). Then the 

solution of equation (2.1) will have the form, 
)( ypt

i

o

y

e





  (or: 
)  ( rpt

i

oe









 for 

waves of any direction). However, the form of equation (2.1) does not change. 
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Symbolizing  i
t

̂


   and 


ip̂ , where ̂  and p̂ are some differential operators, and  

using the Dirac matrices  ˆ,ˆ
0


, we can write the equation (2.1) in the quasi-quantum form: 

   0)( ˆˆˆˆ 2222

0  ypc


 ,     (2.3) 

The physical meaning of the operators, 
t

i


 ̂  and 





ip̂  is found by means of their acting 

on the wave function:  





t
i ˆ ,  pip





ˆ . From the dispersion relation follows 

the equation of conservation of energy-momentum for the photon:  22 pc . 

 

3. The current and mass of massive particles  

Equation (3.1) can be represented as a system of two equations for massless electron and positron: 

   0' ˆ ˆˆˆ   pco


,    (3.1) 

   0ˆ ˆˆˆ'  pco


 ,       (3.1’)  

where the wave function of these equations we  denoted  as ' . 

 

Self-interaction of the photon fields leads to the appearance in the photon of two displacement 

currents of different directions (Kyriakos, 2009).   In the mathematical description of this process, in 

the equations (3.1) an additional term arises:  

 E
r

c
Ej

C

e 1

44 


 ,     (3.2) 

where 2cme , and cmr eC    is the Compton wavelength of an electron,  em  is the electron 

mass, and E  is  the electric field component of own field of particle (in the simplest case the 

magnetic current is zero).  

 

This term in mechanical representation contains inertial mass of a particle: 

 


2

4

1 cm
j e

e


,     (3.2’) 

 

In the equations (3.1) appear the free term with mass em  and they become the equations of electron 

and positron Dirac wave function  : 

   0 ˆˆ ˆˆˆ 2   cmpc pho


,    (3.3) 

   0 ˆˆ ˆˆˆ 2  cmpc pho 


,        (3.3’)  
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4. The electron and positron equation 

The emerging particle, which we conditionally call "massive photon", is unstable and breaks into 

massive particle-antiparticle, particularly, electron and positron (this fact allows us to consider a 

"massive photon" as an intermediate boson). 

 

The work of removing the electron and positron from each other requires energy, equal to 2cme
.  

According to this the equation (3.3) implies the existence of equations of electron and positron in the 

external field of each other: 

      0ˆˆˆˆˆ 2

0   cmppc eexex


,     (4.1) 

      0ˆˆˆˆˆ 2

0   cmppc eexex


,     (4.1’) 

 

Through removing particles from each other in infinity these equations pass into the free equations of 

electron and positron: 

   0 ˆˆ ˆˆˆ 2   cmpc eo


,    (4.2) 

   0 ˆˆ ˆˆˆ 2  cmpc eo 


,       (4.2’)  

Writing the wave function of these equations in terms of the EM field  HE


,  (which is different from 

the photon field  


, ) we have: 
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. Substituting this matrix in (4.2),  we obtain the 

electromagnetic form  of equations (4.2): 
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where  E
r

c
Ej

C

e 1

44 


 ,  (



2cme , а  
cm

r
e

C


 ).  

 

Equations (4.3) are the equations of Maxwell-Lorentz with circular current of left and right helicity. 

This current provides the appearance of the EM field of electron (Coulomb electric field and dipole 

magnetic field).  
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5. The equation of “massive photon” 

At a time when the system of equations (3.1) obtains current (mass) terms, the photon ceases to move 

at the speed of light and becomes massive :  

    












2

42

22

2

2



 cm
c

t

ph
,      (5.1) 

Since the currents have a different direction, the photon remains a neutral vector boson. 

 

The equation of neutral "massive photon” (5.1) can be rewritten in the view: 

     




  42

2
22 ˆˆˆˆ cmpc pho


 ,     (5.1') 

or 

   ,0ˆˆ 42222  cmpc ph


      (5.1’’) 

or in the 1 c  unit system: 
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,     (5.1’’’) 

 

The Lagrangian of this equation is: 
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From equation (5.1) follows the conservation equation for the elementary particles: 

 ,042222  cmpc ph


      (5.3)  

Note that this equation is valid both in quantum mechanics and in classical mechanics for all particles. 

 

In connection with general relativity, the different form of equation (5.1) could be interesting for us. 

The expression for the current was obtained by the rotation transformation, the radius of which was 

equal to cmr eC  . For this reason, the current (mass) 
ej  contains curvature Cr1  through 

which the mass term 441 22242 
Cph rcm   can be expressed. In other words, the equation (5.1) 

can be expressed as: 

 
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
2
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c

t


,       (5.4) 

 

This equation is similar to the equation obtained by Schrödinger as the generalization of the Dirac 

equation on Riemannian space (see below). 

 

5.1. The generally covariant equation of "massive photon" 

 



Prespacetime Journal| August 2014 | Volume 5 | Issue 8 | pp. 740-752 

Kyriakos, A. G., The Mathematical Apparatus of Lorentz-Invariant Gravitation Theory                                               

 
ISSN: 2153-8301  Prespacetime Journal 

Published by  QuantumDream, Inc. 
www.prespacetime.com 

 

746 

The generally covariant equation of "massive photon" Schroedinger was the first to obtain by 

squaring of  Dirac equation, written for the curved space (see the review (Kyriakos, 2012a), section 

6): 

 2

2

1

4

1
 kl

kll

kl

k Sf
R

gg
g

,     (5.5) 

In the first term is easy to find a regular operator of the Klein second order equation in the Riemann 

geometry. In the third term on the left is recognized well-known term associated with the spin 

magnetic and electric moments of the electron (tensor klS ): 

 

To me, the second term seems to be of considerable theoretical interest. To be sure, it is 

much too small by many powers of ten in order to replace, say, the term on the r.h.s. For   

is the reciprocal Compton length, about 11110 cm . Yet it appears important that in the 

generalised theory a term is encountered at all which is equivalent to the enigmatic mass 

term. 

   

This term can be associated with the free term of the equation (2.14). According to Gauss, on a 

curved surface  21  R , where 21   ,   are the normal curvature of the surface. If, '21     

then  2'R . Assuming by Schrodinger that 24 R , we obtain that 


cmcm phe 
2

2'   

 

6. Quantum equations of particles’ motion in the external field 

For a  complete accordance with the electromagnetic theory of matter (EMTM),  the energy ex  and 

momentum 
exp


 in the equation (4.1) must be expressed as the EM values. We can include the 

electromagnetic potentials  tr ,


  and  trA ,


,  using the fact that   and  Ac


1  have the same 

Lorentz-transformation properties as   and p


 (here   is scalar potential, A


 is the vector potential 

of the EM field, and the dimension of  tr ,


  is energy per unit charge, and the dimension of  Ac


1  

is equal to the momentum per unit charge). 
 

As is known, the total momentum and the total energy of a charged particle in an electromagnetic 

field is determined by the following expressions: 

 A
c

q
pp ful


 ,    qful  ,      (6.1) 

where q  is charge, 
22

2

1 c

m
p










  and  

22

2

1 c

mc


 


  are  the momentum and energy of a free 

particle, 


 is particle velocity, exex A
c

q
p


  and  exex q   are the potential momentum and energy 

of some external source (charged particles), obtained in the EM field. 
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Hence, (4.1) can be rewritten as the Dirac equation with an external EM field 

   0ˆˆˆˆˆ 2

0 
















  cmA

c

q
pce eexex





 ,      (6.2) 

 

The corresponding differential equations for the "massive photon" will be: 

      042222
 cmppc exex


 ,     (6.3) 

   042

2

22






















 cmA

c

q
pcq exex


 ,     (6.3’) 

 (here and from now on we omit the subscript “ph” in mass of  “massive photon”) 

 

From this we can obtain the equations of energy-momentum conservation of a particle in an EM 

field: 

     042222
 cmppc exex


 ,     (6.4) 

   042

2

22









 cmA

c

q
pcq exex


 ,     (6.4’) 

From the above it follows that the values exA
c

q 
 and exq  completely characterize the external field 

source. Below we will find the expression for the force, with the source acts on the particle. 

 

7. The transition from quantum mechanical equations of motion to the 
motion equations of classical mechanics 

There are three main methods of transition from the quantum mechanical equations of motion to the 

classical equations (Schiff, 1955; Levich, Myamlin and Vdovin, 1973, Landsman, 2005; Anthony, 

2014).  

a) theorem of Ehrenfest, 

b) on the basis of Hamilton's canonical equations, using Poisson brackets, 

c) the transition from the wave equation to the Hamilton-Jacobi equation. 

  

We shall illustrate this transition based on the methods a) and b). 

 

7.1. Ehrenfest’s theorem in the case of the Lorentz-invariant quantum theory 

Let us use the Lorentz-invariant quantum wave equation of “massive photon”  in external  EM field 

(6.3), obtained in the above section: 

 

In this case (Anthony, 2014)  the wave function has the form 

   
















 tqrA

c

q
p

i
 exp0 




,      (7.1) 
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Now we want to see whether that equation gives us a description of Reality that conforms to the 

classical theory. To that aim we will calculate the expectation value of the rate at which a particle’s 

linear momentum changes with the elapse of time. 

 

Using the relativistic formula for the probability density, we have 

  



































 





 d

tdt

d
i

tdt

d
i

mc

i
p

dt

d 






22

,      (7.2) 

 

In that equation the operators extract the argument of the wave function and differentiate it, so we 

have 

  


























 tqt

dt

d
rA

c

q
rp

dt

d

ttdt

d
i   

 
 ,      (7.3) 

 

The vector variables r


 and p


 do not represent fields, but rather represent points in phase space that 

the particle occupies as time elapses, so we take the spatial derivatives of those variables as equal to 

zero. Further, if we do not want to have the complications with radiation fields, then with respect to 

the source of the potential fields we must take 0dtd  and 0dtAd


.  

 

Carrying out the differentiations thus gives us: 

 

 















































































qU
t

A

dt

Ad
qAq

t

qUA
dt

d
qA

dt

rd
q

ttdt

d
i

                      

 ,      (7.4) 

 

Substituting that result and its complex conjugate into Equation 18 then gives us: 

   U
t

A
Aqp

dt

d











 ,      (7.5) 

which describes the Lorentz electromagnetic force  plus the force due to any other static potentials of 

the particle interaction. Thus we gain strong evidence that the relativistic quantum theory, like its 

non-relativistic version, has the classical limit. 

 

7.2. Derivation of  generally covariant classical equation of motion on the base of 
Ehrenfest  theorem 

An interesting application of the theory (see review Kyriakos, 2012a) is to establish an analogue of 

Ehrenfest's theorem for the Dirac equation, generalized to the Riemann geometry (Sokolov and 

Ivanenko, 1952; pp. 650-651). In addition to the results obtained above, by squaring of the Dirac 

equation, for the center of gravity of the wave packet (provided 0 ), we obtain the equation of 

relativistic mechanics of point: 
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   




  F

c

e
pp

dx

d
4

4
,     (7.6) 

where 4  is the fourth Dirac matrix, 
  corresponds to the particle velocity in fraction of the speed 

of light c , 

  is the Christoffel brackets  










































x

g

x

g

x

g

2

1
, , F is the 

electromagnetic field tensor. The first term on the right of equation is the force of gravity, and the 

second term is the Lorentz force. 

 

7.3. Derivation of classical Hamilton-Jacobi equation of motion on the base of  
quantum wave equation 

The Hamilton-Jacobi equation (HJE) in the classic mechanics is usually obtained by postulating the 

action in the form of:  

  extfree SSSS  int ,      (7.7) 

where freeS  is the action of a free particle in the absence of other particles; 
intS is the action of the 

interaction between the free particle and other particles; 
extS  is the action of other particles in the 

absence of the  first particle. 

 

In quantum physics HJE can be obtained (see review (Kyriakos, 2012b)), if we postulate that the 

action is equal to phase of the de Broglie wave (as Schrödinger did for the derivation of the 

Schrödinger equation). 

 

The particle wave function, in general, has the form: 

  iexp0 ,    (7.8) 

where   is the phase of the wave function. In the case of a free particle the wave function has the 

form:  

  00 exp   rpt
i 


,      (7.9) 

Substituting this function in the equation (5.1), we obtain the law of conservation of energy and 

momentum for a free particle (5.3): 

 42222 cmpc 


 ,     (5.3) 

In the case of a particle in an external field with the energy and momentum 
exex p


,  the wave 

function has the form: 

     00 exp   trpp
i

exex




,      (7.10) 

 

Substituting these functions in the equation (6.3), we obtain the conservation law for a particle in an 

external field (6.4): 

     42222
cmppc exex 


 ,     (6.4) 
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According to Schrödinger in case of a free particle we take: 

 
0   rptS


  ,     (7.11) 

and in case of a particle in external field: 

     0  trppS exex


 ,     (7.12) 

 

Hence we have in the first case for the energy and momentum 




t

S
, p

r

S 
 



, and  in the second 

case  ex
t

S
 




, expp

r

S 
 



.  

 

Substituting partial derivatives of first type in the conservation law of energy-momentum without an 

external field, we obtain the relativistic HJE without an external field: 

 22

2222

2  

 

 

 

 

 

 

  1
cm

z

S

y

S

x

S

t

S

c




















































,     (7.13) 

 

Substituting second partial derivatives of second type in the conservation law of energy-momentum 

with an external field, we obtain the relativistic HJE with the external field:  

22

2

ex  

2

ex  

2

  

2

2  

 

 

 

 

 

 

 1
cmp

z

S
p

y

S
p

x

S

t

S

c
zyexxex 





















































,  (7.14) 

 

In the case of the electromagnetic field we have:  

22

2222

2  

 

 

 

 

 

 

 1
cmA

c

q

z

S
A

c

q

y

S
A

c

q

x

S
q

t

S

c
zyx 




















































,  (7.15) 

 

The action for the interaction can be obtained as an instantaneous change of action: 

 dtpdt
r

S
dt

t

S
dt

dt

rd

r

S
dt

t

S
rd

r

S
dt

t

S
dS 









 




























int ,    (7.16) 

 

i.e.,   dtLdtpdS intint  


;  in the case when the external field is organized by electrical charged 

particles, we have:  dtA
c

q
qdS 











int .  

Here  

   


A
c

q
qpL int ,    (7.17) 

is the interaction Lagrangian (the so-called, minimal connection). As is known, by variation of this 

action gives the expression for the Lorentz force. 
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8. The interaction law of gravitation field in framework of LIGT 

In the case of electrodynamics it is necessary to use not the classical potential energy, but the 

generalized (and depending on the speed) potential energy (energy of interaction) 

 dxdydzAj
c

A
c

q
qU  









 1

 ,    (8.1) 

This interaction energy corresponds to the above interaction Lagrangian (7.17). 

 

From this Lagrangian follows the equation for the Lorentz force. In terms of EM vectors it has the 

form: 

 H
c

q
EqF


  ,   (8.2) 

 

Lorentz force in terms of potentials:  

      AA
c

q

t

A

c

q
qA

c

q

t

A

c

q
qF


















  ,  (8.3) 

 

9. Conclusion 

 

Thus, we have shown that the Lorentz force occurs at the transition from quantum mechanics of 

massive particle to classical mechanics of this particle, as a reflection of the unique relation of the 

inertial mass with internal and external fields of the particle. According to our axioms, we must 

conclude that the Lorentz force law or its modifications should be responsible for the description of 

the gravitational force or energy. 

 

In addition, the connection of inertial mass with gravitational charge becomes clear, as well as the 

relationship between the electric charge and gravity charge (mass), which allow us to proceed from 

Coulomb equation to the Newton equation of gravitation. 
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