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 ABSTRACT 
 

We investigate a dynamical basis for the Riemann hypothesis
1
 (RH) that the non-trivial zeros of 

the Riemann zeta function lie on the critical line x = ½. In the process we graphically explore, in 

as rich a way as possible, the diversity of zeta and L-functions, to look for examples at the 

boundary between those with zeros on the critical line and otherwise. The approach provides a 

dynamical basis for why the various forms of zeta and L-function have their non-trivial zeros on 

the critical line. It suggests RH is an additional unprovable postulate of the number system, 

similar to the axiom of choice, arising from the asymptotic behavior of the primes as n . 

Part I of this article includes:  Introduction; The Impossible Coincidence; Primes and Mediants - 

Equivalents of RH; A Mode-Locking View of Dirichlet L-functions and their Counterexamples; 

Widening the Horizon to other types of Zeta and L-Function; L-functions of Elliptic Curves; and 

Modular and Automorphic Forms.  

 

Key Words: dynamical key, Riemann Hypothesis, non-trivial zero, unprovable, asymptotic. 

 
Introduction 

The Riemann zeta function (z)  nz

n1



  1 pz 
1

p  prime

  Re(z)>1 is defined as either a sum of 

complex exponentials over integers, or as a product over primes, due to Euler’s prime sieving. 

The zeta function is a unitary example of a Dirichlet series ann
 z

n1



 , which are similar to power 

series except that the terms are complex exponentials of integers, rather than being integer 

powers of a complex variable as with power series. We shall examine a variety of Dirichlet 

series to discover which, like zeta, have their non-real zeros on the critical line x = ½ and which 

don’t.  
 

In historical terms, there is a unique class of such series, which do appear to have their unreal 

zeros on the critical line - the Dirichlet L-series, or when extended to the complex plane, L-

functions: 

L(z,)  (n)nz

n1



  1 (p)pz 
1

p  prime

 where (n), n  0,L ,k 1  is a Dirichlet character. 

                                                 
*
 Correspondence: Chris King  http://www.dhushara.com E-Mail: chris@sexualparadox.org   

   Note: This work was completed 11 May – 16 Oct 2011 . 
 
1
 Links in blue which do not have an htm reference refer to Wikipedia search items, or in the case of Collatz  

   conjecture, Mellin transform, prime counting and grand unitary ensemble to the live htm link in King 2009. 

 

http://en.wikipedia.org/wiki/Riemann_hypothesis
http://en.wikipedia.org/wiki/Riemann_zeta_function
http://en.wikipedia.org/wiki/Dirichlet_series
http://en.wikipedia.org/wiki/Dirichlet_L-function
http://en.wikipedia.org/wiki/Dirichlet_L-function
http://www.dhushara.com/
mailto:chris@sexualparadox.org
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(The images in the figures are generated using a Mac software research application developed by the author, which 

is available at: http://dhushara.com/DarkHeart/RZV/. It includes open source files for XCode compilation for 

flexible research use and scripts for the open source math packages PARI-GP and SAGE to generate L-functions of 

elliptic curves and modular forms.) 

 
Fig 1: Riemann zeta and a selection of Dirichlet L-functions with a non-L function for comparison: L(2,1) and L(5,1) 

have regular zeros on x = 0 as well as non-trivial zeros on  x = ½ , due to their being equal to zeta with additional 

prime product terms. While L(4,2) is symmetric with real coefficients, L(5,2) and L(61,2) have asymmetric non-

trivial zeros on x = ½, having conjugate L-functions. L(666,1)  is similar to L(2,1) and L(5,1), but has a central third-

order zero due to 666 being the product of three distinct primes 666=2.3
2
.37. Far right the period 10 non-L-function 

with χ = {0,1,0,-1,0,0,0,1,0,-1} (portrayed naked of any functional equation for 100 terms) has zeros in the critical 

strip 0<x<1 manifestly varying from the critical line. Images generated using the author’s application RZViewer for 

Mac (http://www.dhushara.com/DarkHeart/RZV/RZViewer.htm ). 

 

It was originally proven by Dirichlet that L(1,χ) ≠ 0 for all Dirichlet characters χ, allowing 

him to establish his theorem on primes in arithmetic progressions. While (1)  is singular, 

L(1,)  for non-trivial characters is known to be transcendental (Gun et. al.). For example 

1
1

3


1

5


1

7
L  L 1,(4,2) 



4
, leading to the study of special values of L-functions. 

A Dirichlet character is any function χ from the integers to the complex numbers, such that: 

1) Periodic: There exists a positive integer k such that χ(n) = χ(n + k) for all n. 

2) Relative primality: If gcd(n,k) > 1 then χ(n) = 0; if  gcd(n,k) =  1 then χ(n) ≠ 0. 

3) Completely multiplicative: χ(mn) = χ(m)χ(n) for all integers m and n. 

 

Consequently χ(1)=1 and since only numbers relatively prime to k have non-zero characters, 

there are φ(k) of these where φ is the totient function, consisting of the number integers less 

than n coprime to n, and each non-zero character is a φ-th complex root of unity. These 

conditions lead to the possible characters being determined by the finite commutative groups of 

units in the quotient ring Z/kZ, the residue class of an integer n being the set of all integers 

congruent to n modulo k. 

http://dhushara.com/DarkHeart/RZV/
http://www.dhushara.com/DarkHeart/RZV/RZViewer.htm
http://en.wikipedia.org/wiki/Dirichlet_character
http://en.wikipedia.org/wiki/Special_values_of_L-functions
http://en.wikipedia.org/wiki/Totient
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As a consequence of the particular definition of each χ, L(z, χ) is also expressible as a product 

over a set of primes pi  with terms depending on the Dirichlet characters of pi . As well as 

admitting an Euler product, oth Riemann zeta and the Dirichlet L-functions (DL-functions) also 

have a generic functional equation enabling them to be extended to the entire complex plane 

minus a simple infinity at z = 1 for the principal characters, whose non-zero terms are 1, as is the 

case of zeta. 

 

Extending RH to the L-functions gives rise to the generalized Riemann hypothesis - that for all 

such functions, all zeros on the critical strip 0 < x < 1 lie on x = ½. Examining where the 

functional boundaries lie, beyond which the unreal zeros depart from the critical line, has 

become one major avenue of attempting to prove or disprove RH, as noted in Brian Conrey’s 

(2003) review. Some of these involve considering wider classes of functions such as the L-

functions associated with cubic curves, echoing Andre Weil’s (1948) proving of RH for zeta-

functions of (quadratic) function fields. Here, partly responding to Brian Conrey’s claim of a 

conspiracy among abstract L-functions, we will restrict ourselves to the generalized RH in the 

standard complex function setting, to elucidate dynamic principles using Dirichlet series inside 

and outside the L-function framework. 

 

The Impossible Coincidence 
 

To ensure convergence, zeta is expressed in terms of Dirichlet’s eta function on the critical strip: 

(z)  1 21 z 
1

(1)n1nz

n1



  1 21 z 
1

(z)  and then in terms of the functional equation 

(z)  2z 1 z sin
z

2







(1 z)(1 z)  where (z)  t z1etdt

0



  in the half-plane real(z)≤0.  

 

In terms of investigating the convergence of the series to its zeros, eta is better placed than zeta 

because the convergence is more uniform, as shown in fig 2. 

 

RH is so appealing, as an object of possible proof, because of the obvious symmetry in all the 

zeroes lying on the same straight line, reinforced by Riemann’s reflectivity relation: 


z

2










z

2(z)   1
z

2










1 z

2 (1 z)  

making it possible to express the zeros in terms of the function xi: (z) 
1

2
z(z 1)

z

2










z

2(z)  

for which (z)  (1 z) , so it is symmetric about x = ½, leading to any off-critical zeros of zeta 

being in symmetrical pairs. The function (z)  
z

2










z

2(z)  also has this symmetry. It also 

applies to the L-functions, for which: (z,)  
z  a

2







( / q)


za

2 L(z,), a  {(1)  1} , 

with i
ak1/2(z,)  (n)e2ni /k

n1

k

 (1 z,) . 

http://en.wikipedia.org/wiki/Generalized_Riemann_hypothesis
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Fig 2 (Left) Symmetry in xi means any off-critical zeros have to be in symmetric pairs.  (Top) The number of 

iteration steps in the eta-derived zeta series required to get 5 steps with 0.005 of 0 varies erratically from one zero to 

the next, but this is a disguised effect of the presence of the 1/(1-2
1-z

) term so becomes a smooth curve for eta 

(below). 

 

However, when we come to examine the convergence in detail, this symmetry seems to be lost in 

the actual convergence process. Each term in the series for zeta is 

nxiy  nx(cos(y lnn) isin(y lnn)) , forming a series of superimposed logarithmic waves of 

wavelength  
2

lnn
, with the amplitude varying with n1/2  for points on the critical line. Unlike 

power series, which generally have coefficients tending to zero, Dirichlet L-functions have 

coefficients all of absolute value 1, which means all the wave functions are contributing in equal 

amplitude in the sum except for the fact that the real part forms an index determining the 

absolute convergence. So RH is equivalent to all the zeros being at the same real (absolute) 

address. 

 

 
Fig 3: Top left sequence of iterates of eta for the 20,000

th
 zero, showing winding into and out of a succession of 

spirals linking the real and imaginary parts of the iterates. Top right: The wave functions are logarithmic, leading to 

powers, but not multiples, having harmonic relationships. Below is shown the real and imaginary parts of the iterates 

(blue and red) overlaid on the phase angle of individual terms (yellow).  The zero is arrived at only after a long 

series of windings interrupted by short phases of mode-locking in the phases of successive terms. 
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The logarithmic variation means that the wave functions are harmonic only in powers, e.g. 5, 25, 

125 etc. and not in multiples. There is no manifest relationship between ln n and n1/2  that 

explains why the zeros should be on x = ½ and indeed we will find examples where they are not, 

so there is another factor involved - the primes. Powers of primes or their negation are reflected 

in both Riemann’s primality proofs and other functions, such as the Möbius function:  

1

(z)


(n)

nzn1



 , (n) 
(1)k ,  n has k  distinct prime factors of multiplicity 1

0 otherwise





. 

The iterative dynamics give an immediate clue to the potential uncomputability of this problem. 

If we take a given zero of eta, say the 20,000
th

, and plot the iterates, we find successive n-term 

approximations wind into and out of a series of spirals associated with non-phase locked epochs, 

where the angle of successive terms is rotating steadily, interrupted by briefer periods of phase 

locking, where the angles remain transiently static and hence the complex values of the iteration 

make a systematic translation. Eventual convergence to zero or another final value occurs only 

after the last of these mode-locking episodes (see appendix 1) , whose iteration numbers can be 

calculated directly, by finding where the waves match phase: 

y ln(n 1)  y ln(n) k  ln
n 1

n








k

y
1

1

n
 ek /y  n 

1

ek /y 1
. 

This corresponds also to the mode shifts in the phase-locking of the orbits in yellow in fig 3. 

Between the phase locked translations, the iterative value winds towards and then away from an 

equilibrium value because the angular rotation tends to periodically cancel the effects of 

intervening terms.  After the last phase-translation, further terms simply cause asymptotic 

convergence to the equilibrium. These effects are all caused because we are dealing with a 

discrete sum a(n)n z

n1



 , rather than the continuous integral, which in the case of zeta would 

simply be polynomial integral t  zdt
0



 .  It is the transient discrete effects of the phase-locked 

translations, which determine the eventual value of any Dirichlet series at a given point, so 

effectively we have a discrete computational problem for each potential zero over the integers, at 

least up to the last phase translation.  This suggests that although the zeros of zeta and the L-

functions lie hovering temptingly on the critical line, their location can be determined within  

only by explicit computation over the sequence of terms, suggesting RH is a potentially 

unprovable problem of non-inductive integer computation just as simpler unproven conjectures 

such as the Collatz conjecture are, although palpably true in each finite case (King 2009). 

 

http://en.wikipedia.org/wiki/M%C3%B6bius_function
http://www.dhushara.com/DarkHeart/RH2/RH.htm#Anchor-The-14210
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Fig 4 (a) X-ray view of zeta with curves of Re()=0 (red) and Im()=0 (cyan) show neither alone determines the 

location of the zeros. (b,c) log(abs(1/(1-)) plot of the analytic and product forms of zeta show their divergence for 

x<1 and identity for x>1.  (d) Large fluctuation at the first zeta zero for the product of 84270 primes due to the (red) 

tongue moving across the zero as the number of product terms increases. (e) Iterative dynamics of the product are 

radically unstable, leading eventually to exponentiating fluctuations even at the zeros, but these take an extreme 

number of primes to appear for higher zeros. (f) Fluctuations of real (blue,green) and imaginary (red,magenta) parts 

of zeta along x=1 approximate those of  x=1/2, the zeros (yellow), and the Fourier sin transform (black) of an integer 

step function. 

 

It is difficult to apply the Euler product directly to the zeros because it is radically non-

convergent in the critical strip and equality with the Dirichlet series holds only for x>1 and 

although variations in values along the line x=1 where the sum and product formulations are 

equivalent do approximate the real and imaginary fluctuations along the critical line.  

 

In fig 4 are shown some of the dynamic features of the Euler product of zeta in comparison with 

the analytic Dirichlet sum. The sum and product representations diverge in the half plane x<1 

while being identical on x>1. In the critical strip, the iterated product has radical divergence with 

orbits at the zeros first erratically fractal before setting into exponentiating pulses of divergence, 

as tongues of large value move down the strip with escalating prime values. When we evaluate 

the cumulative product up to the 1,642,052
th

 prime 26299991, we find the first zero y~14 (top) 

has grown to a peak of around 10 million, while the zero y~523 (middle) has only begun to enter 

its first oscillatory burst around the 200,000
th

 prime of around 3 million and y~121412 is as yet 

showing no signs of having fully explored its fractal dynamics  

 

However zeta values along x=1 do fluctuate in a way which approximates both the imaginary 

values of the zeros and a Fourier sin transform of an integer step function (the corresponding 

prime transform also reflects the zeta zeros - see Conrey), showing the distribution of the zeros is 

transform-based, as demonstrated in Riemann’s original proof. 

 

Generally the existence of an Euler product formulation for the sum is seen as a pre-condition for 

well-behaved L-functions and a way of generating new types of L-function through prime 

mediated generators such as elliptic curves which form Euler products determining sum 

coefficients through prime factorization, which also possess a functional equation representation 

in the left-half plane. 
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Primes and Mediants - Equivalents of RH 
 

Riemann developed an explicit formula for the prime counting function (x)  which is most 

easily expressed in terms of the related prime counting step function   (x)  (x)
nx

 , the 

additive von Mangoldt function, where (x)  log p if x  pk  and 0 otherwise. Notice here the 

exclusive appearance of prime powers eliminated in the Möbius function. We then have the 

explicit formula  (x)  x 
x




1

2
log 1 x2  log(2 )

 ()0
0Re()1

 , where 1 / 2  it  are the 

zeros of (z) , and the summation is over zeros of increasing t .  

 

From Ingham (1932 83), we have (x)  li(x)O(x ln x) where   sup
: ()0

(real()) , 

li x 
dt

ln t
0

x

 . Hence the asymptotic behavior of the primes is determined by the real sup of the 

zeros. This comes about because the explicit formula shows the magnitude of the oscillations of 

primes around their expected position is controlled by the real parts of the zeros of the zeta 

function, since  

x



e( p iq) ln(x )

p  iq

x p (cos(q ln x) isin(q ln x))

p  iq


x p

p2  q2
(cos(q ln x) isin(q ln x))(p  iq)

so 
x



x


 2real

x









 2

x p

p2  q2
(pcos(q ln x)) qsin(q ln x)) ~ 2

x p

p2  q2
qsin(ln(x)q)

. 

Hence RH has been shown to be equivalent to the statement (x) li(x)  x1/2 log(x) / 8 . 

A further equivalent of RH is that M (x)  (n)
nx

 O(x1/2 ) , which would guarantee the 

Möbius function would converge for x > ½, and show there were no infinite poles (and hence no 

zeta zeros).  Likewise we have 

(n)
nx

 O(x1/2 ), (n)  (1)(n), (n)  no prime factors with multiplicity , the Liouville function. 

Even more basic functional approximations have been found using the floor function (Cloitre). 

However Mertens conjecture that (n)  (k)
k1

n

  n1/2
, which would have proved the Riemann 

hypothesis, was found false at a value of around 1030  by Odlyzko and Herman te Riele (1985), 

who also showed that (x)  li(x)  fails for some unspecified x < 6.69 x 10
370

.  Even more 

unachievable potential anomalies arise from considering the number of zeta zeros up to T : 

N(T ) 
T

2
log

T

2








T

2


7

8
 S(T )O

1

T







, S(T ) 

1


arg

1

2
 iT







O(logT ) . 

http://en.wikipedia.org/wiki/Mangoldt_function
http://en.wikipedia.org/wiki/Liouville_function
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If RH is true we have a much closer bound S(T ) O
log(T )

log(log(T )







 (Ivic). Odlyzko (1992) 

showed that S(T ) / (log(log(T ))1/2
resembles a Gaussian random variable with mean 0 and 

variance 2 2 , which means it is occasionally much larger than (log(log(T ))1/2
. These results 

suggest we may only see asymptotic behavior when |S(T)| reaches beyond current limits of 

around 3.2 (Odlyzko 2002) to values such as 100, implying T ~ 1010100

, beyond reach of current 

computational methods. 

 

The Farey sequences appear in a third manifestation of RH (Franel and Landau 1924). These 

consist of all fractions with denominators up to n ranked in order of magnitude - for example, 

F5 
0

1
,
1

5
,

1

4,
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1









. Each fraction is the mediant (see appendix 1) of its 

neighbours (i.e.
n1  n2

d1  d2

). For an adjacent pair 
a

b
, 
c

d
, bc  ad  1 . Because the sequence of 

fractions removes degenerate common factors from the numerator and denominator, they are 

relatively prime and hence Fn  Fn1 (n)  since Fn  contains Fn1
 plus all fractions 

p

n
 where 

p is coprime to n.  

 

Two Farey sequence equivalents of RH state: 

(i)  dk ,n   nr , any r 1 / 2
k1

mn

  and (ii)  d
k ,n

2   nr , any r  1
k1

mn



dk ,n  ak ,n ,
k

mn
,  where mn  is the length of the Farey sequence ak ,n , k  1,L ,mn 

 

This is saying that the Farey fractions are as evenly distributed as they can be (to order n
1/2

) 

given that they are by definition not evenly distributed [1], but determined by fractions with 

all (prime) common factors removed. 

 

The same consideration applies to the asymptotic distribution of the primes - they are as 

evenly distributed as they can be (to order n
1/2

 from li(n)) - given that they are not evenly 

distributed [2], being those integers with no other factors. 

 

This is reflected in other properties of the prime distribution, despite its manifest irregularity, in 

such processes as the quadratic Ulam spiral. For example, the Dirichlet prime number theorem, 

states that there are infinitely many primes which are congruent to a modulo d in the arithmetic 

progression a+nd. Stronger forms of Dirichlet's theorem state that different arithmetic 

progressions with the same modulus have approximately the same proportions of primes. 

Equivalently, the primes are evenly distributed (asymptotically) among each congruence class 

modulo d. 

 

What RH - that the non-trivial zeros of the zeta function are all on the critical line [3] - 

shows us is the order to which these fluctuations approach an even distribution is inverse 

quadratic because all the zeros appear to lie on x = ½. However the lack of a proof of RH 

http://en.wikipedia.org/wiki/Farey_sequence
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suggests that these three statements are encoded forms of one another and that the locations of 

the zeros are a consequence of the distribution of primes rather than proving their asymptotic 

distribution, or at best that the three statements are encoded versions of one another. Thus RH is 

either true but unprovable except in finite numerical approximations, or a type of additional 

axiom like the axiom of choice that arises from infinities in calculation, just as the Collatz, and 

other discrete infinity problems appear to be versions of the undecidable Turing halting problem. 

Turing himself tried to prove computationally that RH was false! (Booker 2006). 

 

We now turn to examining how a dynamical interpretation of the zeta zeros can explain why zeta 

and the Dirichlet L-functions have their non-trivial zeros on the critical line as a result of the 

asymptotically even distribution of the primes avoiding mode-locking which could knock the 

zeros ‘off-line’, as is the case for related functions where mode-locking is more pronounced. 

 

A Mode-Locking View of Dirichlet L-functions and their Counterexamples 

 

When we look at the sum formula for zeta, it appears to be simply a sum of powers of integers 

without the primes we see in the product formula, however, immediately we turn to zeta variants 

such as 
1

(s)


(n)

nsn1



 and 
 '(s)

(s)
 

(n)

nsn1



 , we see the primes reappearing the coefficients. 

 

In the context of the natural numbers, the minimally mode-locked numbers are the primes, since 

the only common factor of a prime with any other number, apart from itself, is 1. If we turn to 

the L-functions, we see their characters are constructed to eliminate any form of mode locking in 

three distinct ways, while keeping all the non-zero contributions to the superimposed wave 

function of equal unit weight: 

(1) All coefficients of the bases not relatively prime to the period k are set to zero,  

leaving m =φ(k) relatively prime coefficients. 

(2) The remaining coefficients of the relatively-prime bases are distributed cyclically  

with equally weighted values of absolute value 1 in the m-th roots of unity, according to  

a power of a generator of the m units of Z/Zk. 

(3) Since the group generators result in a sum that can also be represented as a product function  

over primes, the asymptotic distribution of primes places a final limit on any phase-

locking. 

 

The negation of the non-relatively prime bases is consistent with the removal of one or more 

series (1)n1(qn)z

n1



 , q \ k , for which RH applies, but the distribution around the relatively 

prime residues with rotating coefficients arises from the group generators and the product 

representation, which again shows the primes becoming evident in the sum formula. Thus 

although periodic solutions might appear to be mode-locked these periodic solutions are the least 

mode-locked coefficient series in terms of integrating in an equi-distributed way with the prime 

distribution.  
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These conditions have been abstractly generalized into the four axioms of the Selberg class, 

attempting to define the conditions causing a Dirichlet series L(z) to have zeros on the critical 

line: (1) Functional equation and  (2) Euler product 

(3) Coefficients of order 1. Ramanujan conjecture a1  1, an = n    0 . 

(4) At most a single simple pole infinity at 1 i.e. (z 1)mL(z)  analytic for some m. 

 

Pivotally the existence of an Euler product is a signature of non-mode-locking because, in a 

product structure, each of the factors are acting independently with no feedback between them. 

We shall firstly look generally at Dirichlet series and then focus firstly on L-functions that do 

have both a product structure and a functional equation and then on other variants that arise from 

products. In abstract L-functions, the form of the functional equation varies discretely, with a 

finite number of gamma factors dependent on the underlying topology of the prime process 

generating the product.  The Ramanujan conjecture separates functions with weight 1 from 

different weightings which have non-trivial zeros on a different critical line (see later). 

 

To assess the status of RH, we thus consider a wider class of Dirichlet series functions, to 

explore the effects of mode-locking of the wave functions in the critical strip. As a starting point 

we look at series where the coefficients are all 0 or roots of unity, but do not satisfy L-function 

conditions. The only Dirichlet L-function solutions from the finite group theory are periodic, the 

period kn consisting of characters in k that are perfect periodic repeats of k characters and not 

cyclic, or fractal permutations. Non-primitive characters are likewise generated from homologies 

of the residue groups kn(p)  k (p mod k), kn(p)  0 . Key here is the requirement for 

complete multiplicativity arising from the Euler product, each integer being a unique product of 

primes. 

 

 
Fig 5: A series of L-functions and Eta (left) and RH-violating Dirichlet functions (right) whose critical strip zeros 

are illustrated by plotting their location (above) and their cumulative frequency, using a Matlab Newton’s method 

scan. 
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In fig 5 on the left are shown the zeros of eta and a set of typical L-functions, confirming both 

the confinement of the zeros on 0 < x < 1 to x = ½, and the t.ln(t) related cumulative frequency, 

discovered in Riemann’s analysis of the zeta zeros. The method looks along a series of closely-

spaced values running vertically for local absolute minima and then performs Newton’s method 

using the approximate formal derivative for small h. On the right are shown a series of greater 

and lesser violations of the L-function / Selburg class conditions. Note that the derivative of zeta, 

despite not having an Euler product, does inherit a functional equation from zeta and its zeros are 

wide of the critical line, implying the functional equation is by no means sufficient, although it 

does define a symmetry about the critical line. Further examples are the Hurwitz and Davenport-

Heilbron zeta functions (see later). 

 

From the top down we have the derivative of zeta  '(z)  by formal differentiation of the 

functional equation, which has terms effectively growing with -ln(n). Its zeros, corresponding to 

critical points of zeta, extend far out of the critical strip with an average real part of over 1. The 

next are Dirichlet series of random equi-distributed integers from {-1, 0 and 1}. This shows zeros 

distributed with means close to x = ½. Morse-Thule is a fractal sequence with even coefficients 

zero and the vector of odd coefficients recursively generated by v = [v, –v] with initial condition 

v = 1 viz {1,-1,-1,1,-1,1,1,-1 …} Again this has a mean close to x = ½.   

 

 
Fig 6: Even with a confirmed L-function such as Dirichlet  L(61,2) higher periods cause delayed convergence, 

requiring a disproportionate number of function terms to recognize zeros tending to the critical line. 

 

The last two are variants of the L-functions on their left by minor substitution. The first is 

effectively an alternating arithmetic series in 3’s similar to that in 2’s of χ(4,2), namely 

1z  4z  7z L , showing arithmetic series of bases appear to have zeros on the critical line if 

and only if they correspond to DL-functions. In particular, these modified series are not 

necessarily completely multiplicative, as all L-functions are leading to them not having a 

straightforward expression as an Euler product of primes. This may itself be sufficient reason for 

the non-L functions to be off-critical. 

 
Function 

Dzeta 

Random [-1,0,1] 

Morse-Thule ±{0,+/-1,0,-/+1}
 

Golden Angle Rotation 

{1,0,0,-1,0,0} 

{1,0,-1,0,0,0,1,0,-1,0} 

Means over zeros in [0,1000]  

1.1174 

0.5306, 0.4891, 0.4905 

0.5161 

0.6290 

0.4761 

0.4959 
Table 1: Some average x coordinates in the critical strip 
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From table 1 we can also see that, although these variants may have neither a functional equation 

nor an exact symmetry around the line  x = ½, the mean real value of their zeros still lie close to 

the critical line.  This is also consistent with the average trends in zeta functions. For example, if 

we take the curve f (x)  1 geometric mean
y20...120 step 0.01

(abs((x  iy)1)) , we find it has a zero at ~0.5646, 

reflecting the innate symmetry of the xi function of fig 2. 

 

 
Fig 7: Function p(y) showing the x-coordinate for each y, where the absolute value of zeta differs by 1 from 1. 

 

Alternatively when we take the individual curve p(y)  {x : (x  iy)1 1}  in the interval 

[20,120], as in fig 7, we find it has a geometric mean of 0.4965. 

 

While these estimates are just very rough ad-hoc approximations because of the exponentiating 

irregularity of all these functions, they do indicate how zeros of Dirichlet functions can deviate 

significantly from the critical line while still having an averaged behavior closely spanning it. 

There is also no evidence for symmetric pairs of off-critical zeros, as would be required by the 

symmetry of the functional equations of zeta and the L-functions. 

 

There are two additional ways we can compare ideas about the basis of the critical zeros. The 

first is the notion that the distribution of the zeta zeros reflects the statistics of random matrix 

theory. The zeros of zeta and their pair correlations have been shown to correspond to a GUE, or 

grand unitary ensemble. In fig 7b we thus compare these two statistics for the unreal zeros of 

DL(6,2) and the non-L function with quasi-character {0,1,0,0,-1,0} illustrated in fig 5 up to 

2500i. Although it is true that DL(6,2), conforms a little more closely to the GUE statistic and 

there is more evidence for sustained phase-locking in the enhanced periodic fluctuations of the 

pair correlation, the idea that GUE is a defining indicator for criticality is less than convincing. 

 

We can also examine the way in which convergent DL and non-L functions generate ‘prime 

counting’ functions using variants of the explicit formula above for zeta. We will use the 

simplified formula (x) 
x

L( )0
0Re()1

 ,   x  iy  counting the zeros in the critical strip in order in  

http://www.dhushara.com/DarkHeart/RH2/RH.htm#Anchor-The-11481
http://www.dhushara.com/DarkHeart/RH2/RH.htm#Anchor-Mangoldt-49575
http://www.dhushara.com/DarkHeart/RH2/RH.htm#Anchor-Mangoldt-49575
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Fig 7b: (Above) distribution of the spacing of the zeros and (below) pair correlations for DL(6,2) with periodic zeros 

removed and the non L function with quasi-character {0,1,0,0,-1,0}. GUE distribution in red. 

 

both directions from y = 0.  In fig 7c the results are illustrated. Notably, both (5,2) and (6,2) 

correctly shift at primes and prime powers relatively prime to the period, but (6,2) does this only 

when the periodic zeros on x=0 are also included. Even more intriguing, the non –L function  
(0,1,0,0,-1,0} also counts shifts unperturbed by its off-critical zeros and correctly deletes shifts for terms having 

more than one factor in the series – i.e. 28=4x7, 52=4x13, 70-7x10,76=4x19 and 91=7x13. 
 

 
Fig 7c: DL(5,2) has a prime counting function with real and imaginary parts shifting precisely at primes p≠5, and at 

powers of these primes according to s(pn )  (p) 
n

, χ={0,1,-i,i,-1}, reflecting the von Mangoldt definition 

above. There is no shift at integers with more than one prime factor. DL(6,2) has the same profile if the periodic 

zeros on x=0 are included, but if they are removed, spurious shifts occur at powers of 2. The non-L function 

(0,1,0,0,-1,0} forming an arithmetic progression an={1,-4,7,-10,13,-16,…} has shifts at each of the an except those 

which have more than one factor from the existing series. 

 

We still lack a broad spectrum of examples lying outside zeta and the Dirichlet L-functions 

where the zeros are on the critical line or its displaced equivalent. Classically all the examples 
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found comprise more general types of zeta and L-functions where the coefficients are determined 

by more arcane primal relationships, essentially guaranteeing the zeros are on-line through more 

veiled forms of primal non-phase-locking. In the following section we thus give a portrayal of 

the key types of abstract L-function, with a discussion of how their primal relationships arise. 

 

Widening the Horizon to other types of Zeta and L-Function 
 

To get a view of how L-functions can be extended beyond the context of Riemann and Dirichlet, 

a first stepping point is given by Dedekind zeta and Hecke L-functions of field extensions of the 

rationals Q (Garrett 2011). Here we look for the non-zero ideals of the ring of integers in a field 

extension. These also share features of analytic continuation using functional equations and 

Euler products. Some such as Q[ 5] do not have unique prime factorizations and require 

consideration of the so-called class number, in this case 2, as 6  2.3 (1 5)(1 5) .  

 

 
Fig 8: Profiles of the Dedekind zeta and Hecke L-functions for Z[i], the extension to the Gaussian integers. 

The portraits require both series representation, and the functional equation and Mellin transform theta integrals. 

 

We will look at those of the Gaussian integers Z[i], defined by appending i to the integers, 

resulting in the lattice of complex numbers with integer real and imaginary parts. Here we have  

N  | |2 ,  so o 
1

(N)z
0o  mod o
 

1

4

1

(m2  n2 )zm,n  not both 0

 
1

1 (N )z  prime

 , where 

N  is the norm of the ideal Z[i] /Z[i] , which is uniquely expressible as an Euler product of 

prime ideals. This has a functional equation  z(z)o(z)  
(1z)(1 z)o(1 z) , although, 

lacking an eta analogue, convergence isn’t assured in the critical strip 0 < x < 1, so Mellin 

transforms are commonly used to define the function more accurately there. 

 

Correspondingly we have Hecke L-functions defined as follows. Consider the multiplicative 

group  :Z[i] S1, () ( /)l , l Z . To give the same value on every generator this 

http://en.wikipedia.org/wiki/Dedekind_zeta_function
http://en.wikipedia.org/wiki/Hecke_L-function
http://www.dhushara.com/DarkHeart/RH2/RH.htm#Anchor-Mellin-49575
http://www.dhushara.com/DarkHeart/RH2/RH.htm#Anchor-Mellin-49575


Prespacetime Journal | March 2012 | Vol. 3 | Issue 4 | pp. 362-393 

King, C., A Dynamical Key to the Riemann Hypothesis: Part I 

 

ISSN: 2153-8301  Prespacetime Journal 
Published by  QuantumDream, Inc. 

www.prespacetime.com 

 

376 

requires l to be trivial on units, hence 1 (i) 
i

i








l

 (1)l ,  so l 2Z . We then have for each 

such l a Hecke L-function: 

L(z,) 
()

(N)z
0o  mod o
 

1

4

( /)l

(m2  n2 )z


1

1 ( )(N )z  prime


m,n  not both 0

  where the primes are 

now those of Gaussian integers, units ±1 or ±i times one of 3 types: 1+ i or a real prime which 

isn’t a sum of squares (p mod 4 = 3), or has sum of real part squared and imaginary part squared 

a prime (p mod 4 = 1).   Again we have a functional equation: 

 (z|l |)(z | l |)L(z,)  (1)l (1z|l |)(1 z | l |)L(1 z,) . 

 

 
Fig 9: (Left) Profiles of the coefficients. Dedekind zeta (0) consists of the number of ways an integer can be 

represented as the sum of two integers divided by 4. The Hecke L-functions multiply these by the map 

 :Z[i] S1, () ( /)l , l 2Z  to the unit circle illustrated (centre) for the case 2. Effectively this 

simply multiplies the angle of (m+in) by 2l and sets the modulus to 1 since (rei )  (ei / ei )l  e2li , l 2Z

. It therefore plays a role similar to the Dirichlet characters in evenly distributing the coefficients. All the 

coefficients are real and all but zeta fluctuate in sign. (Right) distribution of the Gaussian primes [r (±1±i), g 

(0,±4n+3) (±4n+3,0), b (m
2
+n

2
)= 4n+1: 4n+k prime] 

 

The profiles of these functions with their analytic continuations are shown in fig 8, requiring, in 

addition to the functional equations, use of Mellin transform integral formulae in the critical strip:  

o(z)  
z(z) yz  y1 z 

(iy)1

4y
dy,

1



  (iy)  e (m2 n2 )y

m,nZ

  en
2 y

nZ









2

 

L(z,)   z |l |(z | l |) yz  (1)l y1 z 
 (iy)

4y
dy,

1



   (iy)  (m  in)2|l |yle (m2 n2 )y

m,nZ

  

Counting the coefficients of the Dirichlet sum over the sums of squares, we find: 

0(z) 1 2z  0  4z  2 5z  0  0  8z L  

 

In terms of our original primes in Z , we can say they fall into three cases, which will carry over 

to Hasse-Weil zeta functions: (i) split (p mod 4 = 1) two square roots of -1 in the finite (Galois) 

field  F
pm

m>1 (see below); (ii) inert (p mod 4 = 3) no square root of -1 in F
pm

, m odd but 2 if m 

http://en.wikipedia.org/wiki/Hasse-Weil_L-function
http://en.wikipedia.org/wiki/Finite_field
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even; (iii) ramified (p = 2) one square root of -1. Confirmation for 2, 3, 3
2
, 5 and 7 is in 

appendix 2. 

When we go back to Dedekind zeta’s Euler product, we see that the product over Gaussian 

primes coincides exactly with an Euler product over integer primes incorporating the above cases 

and both generate the sum coefficients from unique prime power factorisations: 

 

1

1 (N ) z  prime

 
1

1 (12 12 )z






1

1 (32 )z






1

1 (12  22 )z






1

1 (22 12 )z






L


1

1 (2)z
1

(1 (p) z )2
pmod 41


1

1 (p)2z
pmod 43

 
1

1 (2)z






1

1 (3)2z







1

(1 (5)z )2







L

 1 2 z  0  4 z  2 5 z  0  0  8 z L

 

 

Alternatively, we can count the series terms directly in terms of a category mapping (functor) 

from commutative rings to sets, which preserves products and takes finite fields to finite sets 

(Baez). Effectively we are going to find how many ways make finite sets into semi-simple 

commutative rings, which are themselves always finite products of finite fields, which in turn 

have one field of q elements when q=p
n
, p prime, and none otherwise, bringing in the powers of 

primes at a root level. 

We can then make a general abstract Hasse-Weil zeta function  s (z) 
Zs (n)

n!
nz

n1

  where Zs(n) 

are the species of different ways. To find the number of ways to make rings, we have to factor by 

the automorphisms of the finite fields that would make equivalent rings. The number of these 

turn out to be the number of automorphisms in each factor field times the number of 

permutations of equivalent factors.  So we have for n = 0 , none; n =1, 1 (trivial ring an empty 

product of finite fields), n = 2, 1 (F2); n = 3, 1 (F3); n = 4, 2 (F4 and F2 x F2); n = 5, 1; n = 6, 1 

(F2 x F3); n = 7, 1,  

n = 8, 3 (F2 x F2 x F2, F2 x F4, F8).  Hence for all the cases up to 8 except 4 and 8 we have n!/1 

ways, but for n = 4, we have 4!/2 + 4!/2 = 4! ways, the first from F4 and the second from 

permutations of the F2 factors. We find 8 similarly gives 8!/3 + 8!/2 + 8!/6 = 8! ways, so we find 

for the Riemann zeta function (z) 
n!

n!
nz 

n1

 nz

n1

 . 

In the case of Dedekind zeta, each coefficient contains a number of ways combining the 

information from the number of roots of unity in each prime case with the above classification of 

the natural numbers, i.e. n = 0, 0; n = 1, 1x1!; n=2, 1x2!; n = 3, 0x3!; n = 4, 1x4!/2+1x4!/2=1x4!; 

n = 5, 2x5!; n = 6, (0x1)x6!; n = 7, 0x7!; n = 8, 1x8!/3 + 1x8!/2 + 1x8!/6 = 1x8! ways, leading 

again to: 0(z) 1 2z  0  4z  2 5z  0  0  8z L . 

 

This discussion leads on naturally to the next example of cubic curves where we see essentially 

the same picture of prime inertness, splitting or ramification, incorporated into an Euler product 

containing quadratic prime factors. 
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Fig 10: Dedekind zeta functions of a series of extension fields of polynomials portrayed with Dirichlet series and 

functional equation, but without the use of a Mellin transform in the critical strip, highlighting convergence failure 

of the Dirichlet series in the critical strip. Note the degenerate zeros in the left half plane caused by repeated gamma 

factors in the functional equation. Lower-right (inset) Computel Mellin transform portrait of the central valley, 

correcting the errors in the functional equation portrait. 

 

L-functions of Elliptic Curves 

The theory of elliptic curves and modular forms also generate L-functions (Booker 2008), which 

involve Euler products with quadratic factors in the denominator.  In figs 11, 13 are illustrated a 

variety of abstract L-functions from the genus-1 L-function of the elliptic curve 

y2  y  x3  7x  6 , through genus-2, 3 and 4 cases with repeated gamma factors causing 

multiple higher order zeros, to the L-function of a modular form based on the Ramanujan’s Tau 

function , and many other cusp forms associated with elliptic curves. Simple scripts to list and 

generate L-functions of elliptic curves and diverse modular forms via Sage and PARI-GP using 

Tim Dokchitser's example files to generate the L-function coefficients and gamma factors for 

loading into RZViewer are included with the RZViewer package. Some simple Sage commands 

for elliptic curves and modular forms are illustrated in appendix 5. 

 

Hasse-Weil L-functions of elliptic curves E are generated by taking the function E(Q) over Q, or 

a field extension F, and estimating the number of rational points (Silverman 1986). Factoring 

mod p, for primes p, to get a set of Ap points on the curve E(Fp) in the finite prime field Fp, given 

up to a maximum of  p+1 points in Fp (including the point at infinity). We then let ap=p+1-Ap the 

number of missing points.  

 

http://en.wikipedia.org/wiki/Elliptic_curve
http://en.wikipedia.org/wiki/Modular_form
http://www.dhushara.com/DarkHeart/RZV/RZViewer.htm
http://en.wikipedia.org/wiki/Hasse-Weil_L-function
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Fig 11: From left to right, L-functions of the genus-1 elliptic curve y2  y  x3  7x  6 , the elliptic curve 

y2  y  x3  2x2  (19  8)x  (28 11),   (1 37) / 2  over K Q( 37) , the genus-2 curve 

y2  (x3  x 1)y  x5  x4
, the genus-3 curve y2  (x3  x2  x 1)y  x7  2x6  2x5  x4

, the 

genus-4 curve y2  (x5  x 1)y  x7 - x6  x4
, and the modular cusp form (z) 

n1

  (n)e2 inz
, of weight 

12, the modular discriminant, using Ramanujan’s Tau function 

 (n)  (5 (n, 3) 7 (n,5))
n

12
- 35 (6k - 4(n - k)) (k, 3) (n - k,5)

k1

n-1

 , where  (n,k)  d k

d \n

 . This is 

identical to the unique cusp form of weight ≤ 12 over SL(2,Z)=1(1) , mg1p1w12 in the notation of fig 15, and so 

occupies a place among modular cusp forms akin to that of the Riemann zeta function among Dirichlet L-functions. 

 

 
Fig 12: (Left) Examples of elliptic curves, (right) Group operation. 

 

http://en.wikipedia.org/wiki/Modular_discriminant
http://en.wikipedia.org/wiki/Tau-function
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For example, for the elliptic curve y2  y  x3  7x  6 , (0,2), (1,0), (1,4), (2,0), (2,4), (3,1), 

(3,3), (4,1), (4,3), (∞,∞) are solutions mod 5, giving a5 = 5+1-10 = -4.  

 

Hence we can define:  

L(E, z)  ann
z

n1



  Lp (E, z), Lp (E, z) 
1 app

z  p12z 
1

 good reduction

1 app
z 

-1

             bad reduction







  

where bad reduction i.e. a singularity of E(Fp) results from repeated roots in Fp., when ap = ±1, 

depending on the splitting or inertness of p (rational or quadratic tangents of the node) for 

multiplicative reduction (p|N but not p
2
) of E, or is 0 if p

2
|N (additive reduction of the cusp), 

where N is the conductor, the ‘effective’ product of bad primes. Setting 

L*(E,z)  N z /2(2 )z(z)L(E,z) , we have the functional equation L*(E,z)  L*(E,2  z) , where 

 = ±1. The an are generated from the Euler product, convergent for x>3/2.  

 

 
Fig 13: A menagerie of  L-functions of elliptic curves over Q classified by their conductors (above) and their 

defining equations (below) where [a,b,c,d,e] corresponds to y
2
 + axy + cy = x

3
 + bx

2
 + dx + e. Inset Sage renditions 

of rank 0 (non-zero at 1), 1, 2 and 3 cases on [-2,2]
2
 illustrating the Birch and Swinnerton-Dyer conjecture in the 

multiple-ray angular variation round the point. Unlike the higher-genus cases of fig 11, where repeated gamma 

factors cause multiple higher order zeros here it applies only to z = 1. See appendix 4 for computational method 

comparisons. 

 

The conductor, as the ‘effective’ product, differs from the discriminant - a product of all bad 

prime factors. It consists of factors 1 for good reduction, p for multiplicative reduction, and p
2
 

for additive, except in the cases 2, 3 where the exponent may have an additional ‘wild’ 

component, increasing it up to 5 for 2 and 3 for 3, depending on the number of irreducible 

components (without multiplicity) of the ‘special Neron fibre’ (Tate, Silverman 1994).  

 



Prespacetime Journal | March 2012 | Vol. 3 | Issue 4 | pp. 362-393 

King, C., A Dynamical Key to the Riemann Hypothesis: Part I 

 

ISSN: 2153-8301  Prespacetime Journal 
Published by  QuantumDream, Inc. 

www.prespacetime.com 

 

381 

 
Fig 14: (Left): Newton’s method on the Dirichlet series representation at 1000 terms for the modular form Delta and 

four elliptic curves of lowest conductor,  in fig 13, show convergence to the critical line, for smaller imaginary 

values, similar to that of fig 6 for the Dirichlet L-function L(61,2), with convergence diminishing, as the conductor 

becomes larger, due to longer fluctuations in the sign of the coefficients, illustrated in the rescaled coefficients 

(centre) and additive trends (right). Tim Dokchitser’s Computel, now in Sage, can give a more accurate numerical 

calculation for individual zeros using Mellin transforms, however these work only for limited imaginary values 

(<±30 for 37a) so there is no obvious way to accurately test the generalized RH for these L-functions. Moreover the 

Mellin transform method depends on established functional equations and we are interested in Dirichlet series 

because they are possessed by both L- and non-L-functions, which may not have a functional equation. 

A good example is the elliptic curve y2  x3 11x2  385 (Lozano-Robledo), with additive 

reduction on 2, 11, split multiplicative on 5 and inert multiplicative on 7 and 461:  

L(z)  1 5z 
1

1 7z 
1

1 461z 
1

1 app
z  p12z 

1

p2,5,7,11,461

  1
2

3z


1

5z


1

7z
L , 

with conductor N  23 112 5 7 46115618680  and root number -1 (see fig 13). 

 

Elliptic curves have a group multiplication connecting any two points on the curve to the third 

point of intersection of the line through them, as illustrated in fig 12. The Birch and Swinnerton-

Dyer conjecture asserts that the rank of the abelian group E(F) of points of E is the order of the 

zero of L(E, z) at z = 1. Even rank gives ε=1 and odd ε=-1. The group may also have finite 

torsion elements. 

 

Although the function depends on a rather arcane definition, through an elliptic curve, and then a 

quadratic Euler product, the resulting Dirichlet series is a standard sequence of coefficients, 

which possesses a standard functional equation and can thus be portrayed as a meromorphic 

function in C (analytic except for a finite number of simple infinities). For the elliptic curve 

y2  y  x3  7x  6 , the first coefficients are: {1,-2,-3,2,-4,6,-4,0,6,8,-6,-6,-4,8,12,-4,-4,-12,-7,-

8, …}. 

 

http://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture
http://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture
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Fig 14b: L-functions of the elliptic curve conductor 399=3x7x19 come in three forms each of which has two elliptic 

curves associated with it. The space of modular cusp forms of weight 2 on gamma0 with conductor 399 has a 

dimension 53 and all three elliptic curve L-functions are linear combinations of several modular forrn basis 

functions (see fig 15). 

 

If one takes the defining equation of an elliptic curve, one can generate an algebraic function, 

which is single-valued on a surface, enabling the elliptic curve to also be represented as a 

mapping of this surface. This parametrization, via the Weierstrass function and its derivative, 

defines a "fundamental parallelogram" in the complex plane, representing the two periodicities in 

the torus. The doubly periodic nature of the function and a one and three-holed torus (see 

modular forms) are illustrated below left, with the two periodicities illustrated on the one torus. 

 

(z;1,2 ) 
1

z2


1

(z  m1  n2 )2


1

(m1  n2 )2






(m,n)(0,0)



'(z) 
2
 4 (z) 

3
 g2(z) g3, 

g2  60 (m1  n2 )4

(m,n)(0,0)

 , g3  140 (m1  n2 )6

(m,n)(0,0)



 

 

Elliptic functions over C are thus genus-1 curves, topologically equivalent to embeddings of a 

torus in PC x PC where PC is the complex projective plane or Riemann sphere derived by 

adding a single point at ∞ to C. Higher degree curves generate higher genus examples, as 

illustrated in fig 11. 

http://en.wikipedia.org/wiki/Weierstrass%27s_elliptic_functions


Prespacetime Journal | March 2012 | Vol. 3 | Issue 4 | pp. 362-393 

King, C., A Dynamical Key to the Riemann Hypothesis: Part I 

 

ISSN: 2153-8301  Prespacetime Journal 
Published by  QuantumDream, Inc. 

www.prespacetime.com 

 

383 

Modular and Automorphic Forms 

 

Complementing the L-functions of elliptic curves are those of modular forms. The toroidal nature 

of the elliptic function, causes it to be periodic on a parallelogram in C, resulting in a deep 

relationship with another kind of L-function.  A modular function is a meromorphic function 

(analytic with poles) in the upper half-plane H, which is conserved by the modular group SL(2,Z) 

of integer 2x2 matrices of determinant 1 i.e. f(az+b)/(cz+d)=f(z). More generally we have 

modular of weight w (necessarily even) if f(az+b)/(cz+d)= (cz+d)
w
f(z). If it is holomorphic (fully 

analytic) in the upper half-plane (and at ∞) we say it is a modular form. If it is zero at ∞ we say it 

is a cusp form. 

 

 
Fig 15: (Left): Functions f, g representing the 2 dimensions of modular cusp forms in S2(0(37). Here 37b has rank 0  

with  = 1, but 37a rank 1 with = -1. Consequently g has a complicated functional equation represented by (b-a)/2 

for x≥0 and by (b+a)/2 for x<0. It also appears to have zeros manifestly off-critical. (Centre-left): Correspondence 

(see appendix 4) between portrait of e37a using RZViewer and an equivalent portrait using Computel Mellin 

transform algorithm via Sage. The left hand image takes 8 seconds and the right 4 hours on a Mac intel dual core at 

2.1 GHz. (Centre-right) Two modular cusp forms mg0p7w4 and mg1p3w8 of gamma 0, 1, modulo 7, 3 and of 

weight 4, 6 respectively. In the latter case, and that of mg0p1w12 in fig 11, the gamma0 and gamma1 cusp forms are 

identical, but in general the gamma1 space has a higher dimension. For example there is only one elliptic L-function 

of conductor 5077 (see fig 13), but the gamm0 space has dimension 423 and the gamma 1 space dimension 

1076535. If the weight is increased from 2 to 12 the dimension is even higher 11816505! (Right) Symmetric Square 

L-Functions of modular forms over  SL(2,Z) of weight  k = 12, 16, 20 (Dummigan), having weight 4k-3, with five 

Langlands gamma parameters [0, 1, 1-k, 2-k, 2-2k]. (Inset) k=12 negative real zeros showing varying degrees of 

degeneracy (rotated). 

 

Since f(z+1)=f(z), f is periodic, we can express it we can express it as a Fourier series in z or a 

Laurent series in q f (z)  ane
2 inz

n



  anq
n

n



 . If f is meromorphic and has only simple poles 

we have only a finite number of negative powers of q and if f is holomorphic, we have a Taylor 

expansion f (z)  ane
2 inz

n0



  anq
n

n0



 , q  e2 inz
. Using the Mellin transform 

file:///C:/Users/king/Genesis/Preprint/DarkHeart/RZV/RZViewer.htm
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M ( f , z)  f (t)t z1dt
0



 , we can derive the L-function L( f , z)  (2 )2M ( f , z) / (z)  ann
z

n1



 , 

which again has a functional equation. If 

L*( f ,z)  N z /2(2 )z(z)L( f ,z), then L*( f ,z)  (1)w/2L*( f ,w  z) , and L* is meromorphic on C. 

 

In the case of weight w = 2 there is thus a correspondence between the functional equations of 

elliptic curves and modular forms. The Taniyama-Shimura modularity theorem  asserts that 

every elliptic curve over Q has a modular form parametrization based on the conductor, 

essentially through the periodicities induced by its toroidal embedding, a relationship pivotal in 

the proof of Fermat’s last theorem (Daney), where Andrew Wiles (1995) showed that any semi-

stable elliptic curve (having only multiplicative bad reductions) is modular. But if we can find 

xn  yn  zn  then the elliptic curve Y 2  X(X  xn )(X  yn )  is semi-stable but not modular. 

Hence the proof! 

 

 
Fig 15a: (Left) Evolution of the principal Modular forms over SL(2,Z) with increasing weight. (Right) Forms over 

0(N) for increasing levels  N with weight 12 have a similar evolution, with increasing dimensions of old and new 

forms. 

 

We can find the modular form 

corresponding to a given elliptic curve as 

follows (Lozano-Robledo). Consider the 

modular group and congruence subgroups: 

 

We now consider modular forms over 

congruence subgroups of SL(2,Z) as 

above. Note that (N) 1(N) 0(N) SL(2,Z) , (where (N)  also has b  0 ), so that a 

form in 0(N)  is also in 1(N) . For any congruence subgroup  j  there exists N so that 

 j (N)  j  putting the form in  j (N) . Since M \ N j (N)  j (M )  a form in  j (M )  is 

also in  j (N) . 

 

http://en.wikipedia.org/wiki/Modularity_theorem
http://cgd.best.vwh.net/home/flt/flt01.htm
http://en.wikipedia.org/wiki/Modular_group
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Fig 15b: (a) Modular  cusp form over S2(0(26)) represented as a Fourier series in the upper half-plane (a), as a 

function of q in the unit disc (b) and as a Dirichlet series L-function with a functional equation in the complex plane 

(c). 

 

Setting Mk(j(N)) for the vector space of weight k modular forms and Sk(j(N)) for the subspace 

of cusp forms, we find that M2(0(11)) is two dimensional and S2(0(11)) is one-dimensional, 

generated by the function f with Taylor series in q having coefficients an={1, -2, 1, 2, 1, 2, 2, …} 

coinciding with those of e11a.  The corresponding situation for S2(0(37)) is a little more 

complicated, with M  being three-dimensional generated by:  f(q) =q+q
3
-2q

4
-q

7
-2q

9
 +… , g(q) 

=q
2
+2q

3
-2q

4
+q

5
-3q

6
 +… and h(q)=1+2q/3+2q

2
+8q

3
/3+… , and S being two-dimensional, 

generated by f, g with corresponding attached L-functions as shown in fig 15. The dimension 

corresponds to the genus of a multi-hole torus embedding (Stein 2008). Turning to e37a, and 

e37b with coefficients a={1, -2, -3, 2, -2, 6, -1, 0, 6, …} and b={1, 0, 1, -2, 0, 0, -1, 0, -1, …}, 

we find that b = f and a = f – 2g, confirmed by the Taniyama-Shimura theorem, noting that linear 

combinations of modular forms are modular. Notice that 37b has rank 0 with ε= 1 while 37a 

has rank 1, with ε= -1. S2(0(N)) is the direct sum of two subspaces S
+
 and S

-
 because the linear 

operator wN  on Sk(0(N)) wN ( f )(z)  ikNk /2zk f ((Nz)1)  is self-dual and thus has eigenvalues 

±1. The wn eigenfunctions possess the same type of functional equation as elliptic curve L-

functions. In this case we have an eigenform basis a and b, however in the q
n
 echelon basis 

generated by Sage, g lies in neither subspace and has a composite functional equation (fig 15). 

 

When we have a non-prime level N, there are both new forms and a spectrum of old forms 

arising from each of the factors of N. For each factor M, and d|(N/M) we have the modular 

function f(q
d
) as well as f(q) of level M. For example in the case of N=38, there are two old forms, 

which in terms of the Hecke operators, (see below) are eigenforms. These are the elliptic curve 

L-function e19 and the related L-function 2
-z
L(e19), viz: Le19(z) 1z  0 2z  2 3z L  , with 

g(q)  q  2q3 L . We also have g(q2 )  q2  2q6 L , with L-function 

Le19x2(z)  2z  0 4z  2 6z L  2zLe19(z) . 
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Fig 15c: (Left) S2(0(38)) has basis vectors m0-m3, in echelon-form in q

n
, e.g. m0=q-q

5
-2q

6
-q

7
+…, m1=q

2
-2q

6
-2q

8
+…, 

m2=q
3
+q

5
-2q

6
+…, m3=q

4
-3q

5
+q

6
+…, with the elliptic curves being combinations a=m0-(m1-m2)+m3 and b=m0+(m1-

m2)+m3. In this case both elliptic curves have  = +1. (Centre) the power series of m0-m3 in terms of q in the unit disc. 

(Right)  There are also two old eigenforms comprising e19 and 2
-z
L(e19)=m1. The linear combination m19=e19=m0-

2m2-2m3, illustrates the fact that the space of modular forms of level N includes those of M: M|N. We also have 

e19x2=m1 giving 4 eigenforms, so can perform a functional equation reconstruction of the four  mi by inverting the 

matrix defining the elliptic curve eigenforms in terms of the q
n
 echelon basis.  Although each of the m functions 

shown left also have functional equations with = +1, m2 lies in neither S
+
 nor S

-
, for N=19 or 38, as with g of 

S2(0(37)). Again the mi , being superpositions of eigenforms appear to have off-critical zeros, while the eigenforms 

a, b, e19 and e19x2 do not.  

 

At another extreme, the space of modular forms over SL(2,Z) of weight 12 has 2 dimensions, 

with basis vectors represented by the form   of the   function illustrated in fig 11 and the 

normalized  Eisenstein series E12 whereE2k  1
2

(1 2k)
 (n,2k 1)qn

n1



 , each of which is a 

modular form of weight 2k over SL(2,Z). Eisenstein series are defined by 

G2k (z)  (m  nz)1

m,nZ2 \ (0,0)

 with q  e2 inz
 as above, with further generalizations to 

m,n  0modN for  j (N) . This doesn’t have an L-function because the 1 makes it not a cusp 

form, but the coefficients generated by the divisor function do coincide with the sigma function 

(z) z - (2k -1)  of fig 21, thus giving an illustration of the two eigenforms. In many ways the 

modular forms of weight 2 are atypical as Eisenstein series only begin with weight 4. 

 

The symmetric square lift (see fig 15) is defined as follows. Given a form f over SL(2,Z) with 

Euler product, L(z, f )  1- app
z  p2z 

1

 1- f (p)pz 
1

1- f (p)1 pz 
1

p  prime


p  prime

 where 

ap  f (p) f (p)1
, the symmetric square lift is a GL(3) form   with Euler product 

http://en.wikipedia.org/wiki/Eisenstein_series
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L(z,)  1 A(1, p)pz  A(p,1)p2z  p3z 
1

p  prime

  1 (p)pz 
1

1  (p)pz 
1

1   (p)pz 
1

p  prime



where 

 (p)

 (p)

  (p)



















 f (p)2

1

 f (p)2 )

















 (Dummigan, Bian). 

 

 
Fig 15d: Fourier and Taylor representations of the Tau and Eisenstein functions of weight 12 in addition to the L-

function portraits of figs 11 and  21. 

 

Each of the types of L-function discussed admit a functional equation determined by the 

Dirichlet series, a finite number of gamma (Hodge, or Langlands) parameters, determined by the 

underlying topology generating the Euler product,  the conductor, and a sign factor (Dokchitser, 

Harron): 

L*( f ,z)  N z /2(2 )z
z  1

2







L 

z  d
2







L( f ,z), then L*( f ,z)  L*( f ,w  z)  

where |  |1,  =e2ik /n  for Dirichlet L-functions   1 otherwise . The gamma factors can be 

used to define a generalized Mellin transform technique for describing L-functions in the critical 

strip for moderate y values (Dokchitser). These types can be generalized in motivic L-functions 

(Deligne, Dokchitser). The Langlands program (1980) of automorphic forms includes a 

comparable explanation of Euler products involving polynomials of higher degree.   

 

Modular forms that are eigenfunctions of all Hecke operators Tn f  n f  an f  , where 

Tn f (z)  n
k1 (cz  d)k f

az  b

cz  d







, Mn  A 

a b

c d







: A  n







M \Mn

 , have the equivalent 

Euler product L( f ,z)  (1 app
z )1 (1 app

z  p2k12z )1

p||N


p|N

  (Cogdell, Lozano-Robledo). 

Conveniently each eigenfunction satisfies all the Hecke operators Tn simultaneously. 

 

http://en.wikipedia.org/wiki/Langlands_program
http://en.wikipedia.org/wiki/Hecke_operator
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Fig 15e: The situation for level N=43 presents new features. The cusp space has three dimensions and there are also 

three eigenfunction newforms a, b, c, the first of which is identical to elliptic e43, which has root -1. The two 

additional root 1 eigenforms have Hecke eigenvalues  2 , and do not correspond to elliptic curves. Hence there 

are sufficient eignfunctions to represent the q-echelon basis forms in terms of the combined eigenfunction equations 

(left). 

 

One can calculate Hecke operators and matrices in terms of the power series f (q)  amq
m

m

 as 

follows:  

 

Tp( f (q))  (bmq
m

mZ

  (amp  p
k1am / p )q

m

mZ

 , am / p  0, m / pZ , p prime, which is generally 

sufficient for determining eigenvalues and eigenforms.  

For example for N=43, we have echelon basis: f = q + 2*q
5
 - 2*q

6
 - 2*q

7
 - q

9
 + O(q

10
), g = q

2
 - 

1/2*q
4
 + q

5
 - 3/2*q

6
 - q

8
 - 1/2*q

9
 + O(q

10
), h = q

3
 - 1/2*q

4
 + 2*q

5
 - 3/2*q

6
 - q

7
 + q

8
 - 1/2*q

9
 + 

O(q
10

) Applying the above  formula for T2 to f, we have b1  a2  2.0  0 , b2  a4  2.0  2 , 

b3  a6  2.0  2 , giving the first row of the Hecke matrix T2 

0 2 2

1 1 / 2 3 / 2

0 1 / 2 3 / 2

















, which has 

eigenvalues a0 = -2 and a1 =  2 . These eigenvalues give normalized eigenvectors v = q - 2*q
2
 

- 2*q
3
 + 2*q

4
 - 4*q

5
 + 4*q

6
 + q

9
 + O(q

10
), wa1 =  q + a1*q

2
 - a1*q

3
 + (2-a1)*q

5
 - 2*q

6
 + (a1 - 2)*q

7
 

- 2*a1*q
8
 - q

9
 + O(q

10
), which are newforms, normalized eigenforms of level N not arising from 

an M < N, defined as a linear combination of the above echelon basis functions, the first of which 

is the elliptic curve e43a.  One can confirm they are eigenvectors using the same formula, e.g. 
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T2(v) = -2v. By inverting the resulting basis transformation matrix A 

1 2 2

1 2  2

1  2 2

















, we can 

in turn express the echelon basis in terms of the eigenforms.  Each elliptic function with 

conductor N is thus associated with a newform  - (Stein). 

 

Computing the original echelon basis is more complicated (Stein). For forms over SL(2,Z) such 

as those of weight 24 in fig 15a, we can derive a basis for the three dimensional modular space 

based on Eisenstein series namely: E4
6
, E4

3
E6

2
, E6

4
 and then perform row operations to gain a q

n
 

echelon basis called the Miller basis, which has two dimensions of cusp forms. Computing the 

bases of cusp forms over S2(0(N)) is complicated and most conveniently done using modular 

symbols, which are representations of homology classes of paths on the embedded multi-hole 

torus whose genus determines the dimension of the modular space, represented on the upper half 

plane between rational points on the real line (including the point at ∞). Modular symbols have 

relations such as {,} {, } { ,}  0, {,}  0, {,}  {,}  and are acted on by 

rational matrices g{,}  {g(),g()} , can be readily computed using Sage by a technique 

derived by Manin using continued fractions, and are compatible with Hecke operators (Stein).  

 

 
Fig 15f: L-functions of Maass forms over PSL(2,Z) with eigenvalues 9.5336, 12.1730, 14.3585, 19.4847 (odd)  

and 13.7797, 19.4234 (even) and three forms over 0  with N=6, 5, 5, 5 eigenvalues 2.5923, 3.2642, 5.4361, 

4.8937, the last of which has a double eigenvalue with two conjugate L-functions. 

Maass forms are modular differential functions satisfying the hyperbolic Laplace wave function 

  y2 2

x2

2

y2







, which commutes with SL(2,Z), and generates a vast spectrum of 

eigenforms, having complex gamma factors i  e  ir, i 1,2 , where e=0,1 and  1,1 for 

even and odd functions respectively where the eigenvalue is ¼+r
2
, and a slightly more 

complicated Fourier series f (z)  y anKir (2 | n | y)e2 ix

n1



 , with Kir the modified Bessel 

function. For N=11 there are around 1000 such forms over 0 (Booker et. al. 2006, Farmer  and 

http://en.wikipedia.org/wiki/Maass_form
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Lemurell), which can be located by searching for eigenvalue hot spots. Several Maass form L-

functions are illustrated in fig 15f.  

 

 
Fig 15g: Third degree transcendental Maass form L-functions. First views of the L-function profiles for the above 

parameters for three selections of Dirichlet character. 

 

A new class of L-function (Bian 2010, Booker 2008) has been discovered, based on automorphic 

GL(3) Maass forms, which are written in terms of a three dimensional generalized upper half-

plane w=XY, where X 

1 x2 x3

0 1 x1

0 0 1















, Y 

y1y2 0 0

0 y1 0

0 0 1















, xi , yi R, yi  0 . The form (w)  is 

an eigenfunction of the Laplacian, which is preserved under SL(3,Z). This has an extended 

Fourier series, which can be used to define a complex L-function with a degree 3 Euler product  

L(z,  )  1 A(1, p)(p)pz  A(p,1)2(p)p2z   3(p)p3z 
1

p  prime

  

where (p)  is a Dirichlet character ‘twisting’ the L-function and A(p,q) are Fourier coefficients 

of the Maass cusp form with eigenvalues 1,2 , real i 1 / 3.  

 

 
Fig 15h: Hot regions in (u,v) =[10, 20]2 (red) with 4 non-trivial degree 3 examples circled (18.902, 11.761), (16.741, 

16.232), (20.021, 14.070), (19.179, 17.702) and quasi-trivial examples on the diagonal u = v at 13.779, 17.738, 

19.423 (Bian) 
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In particular A(1, p)  A(p,1) . Bian has found locations in parameter space 

(u,v), 1  (1 ui) / 3,2  (1 vi) / 3  defined in terms of the gamma function imaginary 

parameters   (u  2v)i / 3,   (2u  v)i / 3,   (u  v)i / 3where non-trivial transcendental 

degree 3 L-functions, not being simply a product of degree 1 or degree 1 and 2 Euler products, 

nor symmetric square lifts (fig 15) of a quadratic Euler function, occur. These also obey a 

functional equation of the form (z,  )  
3(1 z, %  ) , where ~ takes coefficients and 

gamma factors to their conjugates, and

(z,  )  N z /2 (z )/2
z 

2







 (z )/2

z  

2







 (z )/2

z  

2







L(z,  ) . 

 

The upshot of this study of a reasonable spread of L-functions and non-L counterparts, is that the 

non-trivial zeros lie on the weighted critical line only if they are generated by an underlying non-

mode-locked primal distribution, despite the fact that the Dirichlet sum is over all integers and 

the relationship with the Euler product over primes holds only outside the critical strip in the 

right half-plane. This suggests widening the approach to consider more general classes of Euler 

products. 
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