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 ABSTRACT 
 

The quadratic Mandelbrot set has been referred to as the most complex and beautiful object in 

mathematics and the Riemann Zeta function takes the prize for the most complicated and 

enigmatic function.  Here we elucidate the spectrum of Mandelbrot and Julia sets of Zeta, to 

unearth the geography of its chaotic and fractal diversities, combining these two extremes into 

one intrepid journey into the deepest abyss of complex function space. Part I of this article 

includes: Introduction; A Bridge over Turbulent Waters;  Chasing the Critical Points and their 

Parameter Planes; and A: The Additive World - 1: Far East - the Asymptotically-Critical Plateau; 

2: Real Critical Points, from Miniscule to Vast; and (3) Shang-ri-La – The Unreal Criticals.  

 

Key Words: fractal geography, Riemann Zeta Function, Mandelbrot set, Julia set. 

 

Introduction: 

 

This paper completes a discovery process I began in 2009, using computational applications I 

had developed, looking at the ‘dark hearts’ 
i
 - the Mandelbrot parameter planes - of a wide 

variety of complex functions, including the zeta function, to explore the world of complex 

functions as widely as possible and elucidate universal properties. This year, as I began to re-

explore the parameter planes, using a more versatile second generation version of the 

application, I became literally sucked into the zeta abyss by an unending stream of intriguing 

new and surprising features, which rapidly grew to the point where I realized I was dealing with 

an entire geography of complex function space, spread before me, vast and diverse, like the 

continents of Europe and Asia combined. These are, as far as I know, hitherto unexplored, apart 

from Woon’s 1998 paper 
ii
 setting out a basic description of the Julia set of zero and the outlines 

of the Mandelbrot set as in Fig 1.  

 

The current paper provides a full investigation of the dynamics emerging from all types of 

critical point, from those on the real line to the ones adjacent to the critical line x = ½. The 

software to perform these investigations consists of an open source XCode application for Mac 

downloadable from: http://dhushara.com/DarkHeart/. For those unfamiliar with complex 

numbers, discrete dynamics, or the zeta function, there is an extended introduction at the end of 

the paper. 

 

                                                 
*
 Correspondence: Chris King  http://www.dhushara.com E-Mail: chris@sexualparadox.org   

   Note: This work was completed on March 28, 2011. 
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We are going to use graphic imagery to explore and confirm the dynamics.  The approach is 

unashamedly numerical, depending on finite approximations of arbitrary accuracy, using 

computational algorithms. It is also intentionally Zen in its mathematical approach - 

‘symbolically silent’ in its primary use of graphical representations, with minimal symbolic 

abstraction, to elucidate the geography as fully as possible before describing it. This, supported 

by the software design is qualitative mathematics in action, using the ‘art’ to establish the ‘math’. 

 

 
Fig 1: (Left) The zeta function  (z)  parametrized by additive colors angle (green/yellow) and amplitude (blue 

waves and red) so that 0 is black/green, 1 is blue and large values are red and yellow with waves of blue.  (Centre) 

Parameter plane of (z)  c  from the quasi-critical point 1000 on the asymptotic plateau in the right half-plane with 

singularity ‘island’ (inset) connected by a fractal thread. The bands of blue and yellow distinguish points iterating 

towards  . Strictly speaking the green areas should also be black, as they iterate to the positive half-plane and 

become fixed, although far outside the iteration limit of the method.  (Right) the Julia set of (z)  0  bounds basins 

of attraction to the fixed point  ~ -0.2959 , containing the non-trivial zeros. Smaller island replicates of the main 

connected component surround successive trivial zeros (inset). The frond spacing as we ascend to larger imaginary 

values is spaced irregularly with the zeta zeroes. 

 

Since we know from Galois that we can’t solve fifth degree polynomials symbolically, let alone 

equations involving transcendental functions, and the Riemann hypothesis that zeta’s non-real 

zeros all lie on the critical line x = ½ remains unsolved, despite having been proved for more 

abstract systems 
iii

, even though all such zeros of zeta are palpably on the critical line, it is clear 

that the symbolic approach, despite its capacity for abstract generalization, has limitations when 

dealing with irregular systems of infinite complexity. Hence the research approach taken in this 

paper. 
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A Bridge over Turbulent Waters 

 

The Zeta function is defined for real(z) 1, either as a sum over powers of the integers, or as a 

product over primes (z)  nz

n1



  1 pz 
1

p  prime

 . The sum formula is extended to real(z)  0

by expressing it in terms of the eta function’s alternating series(z)  1 21 z 
1

(1)n1nz

n1



 . It 

is then extended again by analytic continuation to real(z)  0

(z)  2z 1 z sin
z

2







(1 z)(1 z) , where (z)  t z1etdt

0



 , is the gamma function, 

generalizing the integer factorial n!  The result is the most complicated enigmatic complex 

function known to the human mind. 

 

 
Fig 2: (a) f (z)  zez as a real and complex function. (b) Additive Mandelbrot set of fc(z)  ze

z  cwith 

complex exponential fronds.  (c) The central frond for critical point z=1 has local quadratic bulbs. The 

corresponding view for asymptotic plateau quasi-critical z=1000 is in inset (b). The bulbs (d) have dendrites 

supporting quadratic Mandelbrot satellites (e) whose left period 3 bulb has a quadratic period 3 Julia kernel (f,g) and 

orange plateau matching * inset (b). 

 

To make a transition to the perplexing situation posed by the extreme complexity of the zeta 

function, let us look at a function that displays pivotal features of the situation in a simpler form. 

 

Consider . This is an exponential function with an extra z term, which gives it a 

critical point at z =1, since f '(z)  (z 1)ez  0  for z = 1. All transcendental functions can be 

represented as power series equivalent to an infinite polynomial. 

. Every fully differentiable ‘analytic’ complex function 

f (z)  zez

f (z)  zez  z 1 z L 
zn

n!









zn1

n!n1




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can be so represented. This is similar to zeta but different in an important way. A power series 

consists of polynomial terms, fixed integer powers of z, but a Dirichlet series like zeta consists of 

a spectrum of exponential functions of integers. The situation is reversed, with weird and 

wonderful consequences. 

 

However our exponential  does form a Rosetta stone for zeta’s dynamics. In fig 2 is 

shown the function, the Mandelbrot set of fc(z)  ze
z  c  from the critical point z = 1 (see the 

end section if this is unfamiliar to you) and a period 3 Julia set. The function tends to zero in the 

right half plane and to infinity in the left. However, it is sinusoidal in the imaginary direction 

because an exponential eiy of imaginary y is sin(y) + i cos(y), a sinusoidal function whose angle 

varies with y, neatly making complex exponential and trigonometric functions imaginary 

versions of one another. Notice also the dimple at zero, indicating  - the one zero of the 

function. 

 

Looking at the additive Mandelbrot set M1 of fc(z)  ze
z  c from 1, we see it is similar to our 

unfamiliar zeta case, with exponential fronds representing the waves of the imaginary 

exponential, zoomed laterally by the real exponential. Now the central frond looks a little 

different. When we zoom in on it (c), we find it has bulbs just like the quadratic Mandelbrot of 

fig 35, and these bulbs lead to dendrites containing satellite Mandelbrots identical to the 

quadratic case, as expressed in Douady and Hubbard’s seminal article on polynomial-like 

mappings 
iv

. Moreover, when we look at the Julia set of the left-hand 3 bulb on the above 

satellite, the Julia set (f, g) has a tiny period 3 quadratic Julia ‘kernel’, set in a fractal web 

connected to other like kernels. 

 

Now there is another ‘quasi-critical’ point of this function, where it tends to 0 at (+)infinity. If 

we had instead used 1000 as our starting point, we would have found a subtly different 

Mandelbrot set, M  with no quadratic bulbs (inset fig 3(b)), which at the same point as our little 

Mandelbrot satellite was in the middle of an orange tongue (*). The Mandelbrot set M  

classifies the dynamics in the positive half plane, while M1  describes the local polynomial 

dynamics in the Julia set, as can be seen in fig 2. Julia set dynamics is thus regionally defined in 

terms of two distinct critical points. 

 

The individual functions in the zeta sum are integer exponentials f (z)  nz  looking like f except 

for the absence of the forking at zero caused by the z term, having imaginary wavelengths 

varying logarithmically with n, since: 

 

nz  e ln(n)z  e ln(n)(xiy)  nx(cos(ln(n)y  isin(ln(n)y) . 

 

It is the overlapping of these wave functions which gives rise to the irregular pattern of the zeros 

on x = ½. 

 

 

 

f (z)  zez

f (0)  0
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Chasing the Critical Points and their Parameter Planes 

 

To understand the complex dynamics of zeta we need to examine its critical points. These are 

precisely the zeros of the derivative of zeta, whose z values are the slope of zeta at z, as shown in 

the right of fig 3. Just as zeta has so-called ‘trivial’ zeros along y < 0 and ‘non-trivial’ ones on 

the critical line x = ½, the critical points of zeta are of the same two divergent types, which I will 

term ‘real’ and ‘unreal’, one series along the negative real axis and the other close to the critical 

line. 

 

Fig 3 shows the first few critical points on y = 0 lying between the trivial zeros, and those in the 

complex plane lying between the non-trivial zeros. The ‘real’ criticals have oscillating values 

forming an exponentially varying series (x)2x 1 x sin
x

2







(1 x) . The ‘unreal’ ones 

have similar critical values to one another, irregularly wandering between 0.4 and 1. We will 

name the criticals by rounding down, so the reals we consider are z-2, z-4, z-7, z-9, z-11, z-13, z-

15, z-17 etc. Notice that the ‘miniscule criticals’ up to z-13 lie in the central valley of dzeta 

where the absolute derivative is less than 1, with z-15 forming a transition point and the ‘vast’ 

ones, from z-17 on, are lost in tiny pockets in the exponentiating highlands. We name the 

‘unreals’ looking at their positive imaginary values e.g. z23, z31, z38, z42, … z65.  They also 

tend to be located in regions where absolute dzeta is less than 1. 

 

 
Fig 3: The ‘real’ critical points of zeta lying along the x-axis (left) and the ‘unreal’ ones close to the critical line 

(centre). The derivative of zeta (right) shows the two series of critical points as its zeros at the nipples and dimples 

along the negative real axis and vertically along the outer edge of the blue curve where dzeta has absolute value 1. 

 

However, we are not just looking for critical points, but the places where critical points might 

iterate to, Mandelbrot satellites that classify interesting Julia set dynamics, which might be 

somewhere else all together. Looking for tiny regions in a complex exponential fractal can be 

worse than trying to find a needle in a haystack, so we need at least minimal GPS navigation. 

 

In the quadratic case f (z)  z2  c  (see end section), the critical point at zero iterates 

0 0  c  c c2  c . For c ~ 0 we are in the main cardioid, where all points head to the fixed 
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point 0. We can solve for this fixed point. The simplest case is the critical point itself being fixed 

c  c2  c, so c  0 . Here the c value turns out to be the same as the critical point, but in general, 

this c value, which we call the ‘principal point’, could be different from that of the critical point. 

 

More generally, we can try to solve for c values that become eventually fixed or eventually 

periodic with period n in m steps. These points are the repelling Misiurewicz points, forming the 

tips and n-connection points of the period n dendrites, as well as the attracting main and satellite 

Mandelbrot sets, in the quadratic case. We will call these collectively ‘M-points’. Solving for 

fixed critical values, fixed at the second step, gives (c2  c)2  c  c2  c  giving c4  2c2  0  or 

c = 0, -2. These are our original point and the tip of the dendrite on the negative real axis. If the 

absolute derivative is less than 1 the point is attracting. We thus need to check what these do, by 

checking whether f '(z)  2z 1 . The first is (super)-attracting since its derivative is 0. The 

second however is repelling, since its derivative is -4. Hence it doesn’t lead to a Mandelbrot, but 

the tip of a dendrite. 

 

For our purposes, we seek the simplest of these solutions for the most horrendous function. We 

won’t be able to solve all the equations but we might be able to get a numerical solution and 

even one that we can display graphically in a useful form.   

 

The very simplest - the critical point being fixed is cp :cr (cr ) cp, cp  cr (cr ) , or in the 

multiplicative case cp :cr  cp(cr ), cp  cr /(cr ) . Since  is critical, its derivative is zero, so it 

is super-attracting and must have a critical value in the Mandelbrot set or its satellites. These 

‘principal points’ cp can be far from the critical point, even in regions of dzeta where the values 

are exponentiating towards the infinite.  

 

If we go one step further and look for c values for which the critical value is a fixed point, call 

them ‘fixed values’, for the additive zeta Mandelbrot c(z) (z) c  as in fig 1, we seek 

(cr ) c ((cr ) c) c . Solving we get ((cr ) c)(cr )  0 , or (vr  c) vr  0 , where 

vr (cr )  is the critical value. For the multiplicative case c(z)  c(z) , we get (cvr ) vr  0 .  

 

In both cases these ‘transfer functions’ of c are just transformed copies of zeta, translated, or 

scaled, in the domain and raised, or sunken, in the range. We can identify the principal point 

among the fixed values, because it has a ‘double twist’ in its angle, leading to two yellow angle 

rays. 

 

We can now make a graphical portrait of the transfer functions, locate their zeros and explore the 

neighbourhood for its local fractal geography. However we also need to know if the fixed points 

are attracting and thus lie in satellite Mandelbrot sets, or repelling and thus Misiurewicz points, 

by testing the derivative of zeta.  Fortunately we have a serendipitous graphical way to do this, 

because the colouring scheme for zeta was chosen to highlight absolute value 1, so applied to 

dzeta, it gives a colour test of the derivative for attracting or repelling. This can be scaled to 

examine it more closely, or the derivative can be calculated numerically. The method only gives 

cr
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one basic set of candidates, further of which could be found by solving for later fixed or periodic 

points. 

 

 
Fig 4: Transformed zeta transfer functions for the critical points z23 and z-13 compared with that of dzeta with the 

angle colouring omitted to emphasize the transition across abs(z) =1. As noted (right) the loci in the bay for z23 have 

absolute derivative greater than 1 so should be Misiurewicz  points, while those of z-13 are attracting and should lie 

in the Mandelbrot set, or its satellites. Principal points are identifiable by their ‘double rays’ top in z23 and left in z-

13.  

 

A: The Additive World 

 

We are first going to explore the geography of the additive Mandelbrot sets c(z) (z) c  for 

the various critical points of zeta and how they interact with one another and with the Julia sets 

they define. Subsequently we will explore the more bizarre dynamics of the multiplicative 

parameter planes of c(z)  c(z) . 

 

1: Far East - the Asymptotically-Critical Plateau 

 

We begin with the Mandelbrot set M  in fig 1, originating from the nominal quasi-critical point 

1000 on the plateau of zeta converging to 1 in the right half plane. This does not display 

polynomial bulbs or satellite quadratic Mandelbrot sets but consists of fractal enclosed 

representations of bounded Mandelbrot regions, interpenetrated by the chaotic escaping set, 

fractally replicating the exponential ferns, whose global form is illustrated by the anti-

Mandelbrot island around the singularity in the inset of fig 1. 

 

What the plateau’s parameter plane M  is measuring is the dynamics of differing c values, 

iterated from 1000 far in the right half plane. This is illustrated in fig 5, showing the way atlas 

addresses on M  define the asymptotic step dynamics in the right half plane. As we pass 

through fractal regions of M , this results in a fractal sequence of dynamic ‘explosions’ of the 
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right half-plane whenever a path in M  crosses a boundary between a black and a coloured 

region, dramatic in movie format. 

 

 
Fig 5: Locations on the Mandelbrot set M  classify the asymptotic dynamics in the right half-plane. The 

quantitative step-colouring of each location on M coincides closely with the step colouring of dynamical escape on 

the plateau. Points in M and its fractal islands remain bound (black). 

 

Points c in the right half-plane iterate to the fixed point c + 1 because (c) = 1, so iterating from 

the quasi-critical point, 1000(1000)1000 1001(1001)1000 1001. This is true for 

all z with large positive real part, so the iteration is fixed. Numerically, the principal point is 

1000 (1000)  999 , which again places it in the asymptotic limit, which coincides with the 

picture of the Mandelbrot set engulfing the positive half-plane. 

 

Although the dynamics consists of fractal exponential fronds, these do display the same mediant-

based fractional winding adding fractional rotation periods that the quadratic Mandelbrot bulbs 

have. In fig 6 we show that the same mediant winding sequences, we see in fig 35 for the 

quadratic Mandelbrot appear on the bays in the fronds bounding M. 

 

Intriguingly the Farey tree of mediants appears in one variant of the Riemann hypothesis. Farey 

sequences consist of all fractions with denominators up to n in order of magnitude – viz 

0
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Two versions of RH state 
v
: 
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(i)  dk ,n   nr , any r 1 / 2
k1

mn

  and (ii)  d
k ,n

2   nr , any r  1
k1

mn



dk ,n  ak ,n ,
k

mn
,  where mn  is the length of the Farey sequence ak ,n , k  1,L ,mn 

 

We can colour M according to how many steps it takes to reach within   of a fixed point or 

periodicity and colour by the number of steps in blue and add redness for the period. This 

immediately shows up the periodicities of the bays neighbouring the boundary, which can be 

confirmed to correspond to Julia sets with rotational periodicity the same number, confirming the 

sequences of periods of the bulbs and the mediant relationship in the fractal progression. 

 
 

Fig 6: Shading the bulbs demonstrates their periodicity, as confirmed by the Julia set portraits, which display the 

corresponding rotational periodicities in their spirals, confirming an upward set of odd periodicities 3, 5, 7, 9 ... and 

a downward set of integer periodicities 3, 4, 5, 6 ..., each with mediant fractality, viz (3,4)=7, (4,5)=9, (3,5)=8, 

(5,7)=12. Period 3 is shown top right of (c). 

 

2: Real Critical Points, from Miniscule to Vast 

While the zeta zeros on the real line are regarded as the trivial solutions of sin
z

2







 0 , the 

critical points on the x-axis are anything but trivial, and each displays qualitative features of zeta 

that give each critical point a distinct role in the dynamics. When we have a function with more 

than one critical point, to understand the dynamics, we have to investigate the Mandelbrot set of 

each critical point. The critical points contribute to different dynamical features of the whole 

Julia set, as illustrated in figs 5 and 10. The dynamics also involves interactive effects between 

the critical points which causes their Mandelbrot sets to appear merged or amorphous and the 

dynamics in different parts of the Julia set to be influenced by each of the critical points. 

In this respect the situation is very different from the quadratic case, where the Mandelbrot set is 

an infinite atlas of the dynamics of the Julia sets, each of which has a single type of dynamics 

determined by the c value of the single critical point.  In the case of zeta, with an infinite 

collection of critical points, the relationship between the Mandelbrot and Julia dynamics is 

structurally analogous to a Fourier transform. As before, the Mandelbrot set for a given critical 
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value is a spatial ‘integral’ of Julia dynamics over continuously varying c values. However the 

Julia set dynamics is now determined by a countably-infinite collection of critical points, each of 

which can fractally dominate the dynamics around its M-points. Examples of Julia set dynamics 

responding to many critical points are illustrated in several of the figures. 

 

(a) Continental Divide: The Critical Point z-15 

 

The critical point z ~ -15.339 commands a pivotal role in the dynamics of the central basin. 

When we examine its principal point and fixed values in the central valley, fig 7(b), we find they 

are in the main body of its Mandelbrot set , close to the shores of the three bays we can also see 

in the Mandelbrot set  of fig 1, originating from the three bounding fronds. Pivotally its principal 

point is right off the shore of the innermost bay, and it is here we find a sequence of quadratic 

bulbs and the cusp familiar in the quadratic Mandelbrot set (fig 35). 

 

 
Fig 7: (a) Base of the central valley for z-15 showing quadratic bulbs perturbed by cubic and higher dimensional 

interference. (b) The critical value fixed points, including the principal point, all lie in the central valley close to the 

boundary, thus dominating the bulb dynamics. (c) The period 3 side bulb gives rise to a Julia set (d,e) with obvious 

period 3 dynamics. The dynamics are perturbed by adjacent critical points both of which are in a cubic relationship 

to z-15 and possibly other ‘unreal’ criticals. The features of (c-e) share dynamical morphology with regions on the 

Mandelbrot set (g) and the corresponding Julia set (h) of the cubic function f (z)  z3  z  c . (f, h) Satellite 

Mandelbrot sets of the two functions also share cubic morphology. 

 

As we move into the cusp, fig 8 lower, we find high periodicity dynamics characteristic of 

classic quadratic regions such as ‘seahorse valley’ (6 in fig 35). As we move further away from 

the cusp the dynamics becomes more complicated, with the largest bulb having an appendage 

from the base of a kind also seen in cubic functions where the critical maxima and minima are 

close enough that their dynamics interferes. Although zeta has no degenerate critical points 

which are multiple zeros of the derivative (compare fig a6), in fig 7 comparison is made between 

regions of the cubic function f (z)  z3  z  c  and this region, in terms of both its Mandelbrot 

and Julia dynamics, confirming the similarities in a Julia set from the period 3 sub-bulb (*) and 

in satellite Mandelbrots from each. This dynamic interference possibly originates from z-13 as it 



Prespacetime Journal | March 2012 | Vol. 3 | Issue 4 | pp. 319-340  

King, C., Fractal Geography of the Riemann Zeta Function: Part I 

 
ISSN: 2153-8301  Prespacetime Journal 

Published by  QuantumDream, Inc. 
www.prespacetime.com 

 

329 

shares features here with z-15, however many other critical points could be involved. For 

example, the unreal critical z95 has a deformed version of the z-15 structure, which also has the 

same cubic ‘wings’. 

 

Many of the ‘unreal’ criticals also have critical values close to the critical value of z-15 of 0.52 

and fixed values in similar locations (see figs 21, 22), so that the dynamics surrounding the 

central bay consists of the superposition of a countable infinity of perturbations – a little like the 

humming on telegraph wires in the desert consists in principle of summed vibrations along the 

transmission line. 

 

Each frond is a fractal replicate of the entire dynamical parameter plane, so has a fractal replicate 

of the central valley, increasingly to one side, as we move up successive fronds. For many 

critical points such as z-17, fig 17, the fractal valleys replicate the central valley dynamics, but 

not in z-15, as shown in fig 8 above, where two adjacent generations of fractal valley each have 

their own distinctive dynamics. Nevertheless the fractal valley in fig 8 does support a 

Mandelbrot satellite in a corresponding location to the satellite we find in fig 9 at the base of the 

central valley. 

 

 
Fig 8: (Above) The structures in fig 7 are not fractally repeated in the fractal valley at y~13 (left) which has distinct 

dynamics from the central valley, although z-15 does have a Mandelbrot island at the starred point (right). Fractal 

repeats do occur for z-17 on (figs 17-19) and the dynamics is more similar for z-2 (fig 16). (Below) An exploded 

view in the cleft of the main basin of z-15 showing high periodicity dendrites. 
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There are also multiple fractal replicates of the central valley interspersed down the base of the 

valley (see figs 9 and 15) and into the crests and troughs running along the negative real axis, 

which will be useful in elucidating the dynamics. 

 

 
Fig 9: Fractal basin on the real line at x ~ -17.95 (top, enlargement right) has a satellite of the critical point at  

x ~ -15. The Julia set of its upper period 3 bulb (below) generates a Julia set with a period 3 kernel in its base. 

 

 

(b) Gently Undulating Lowlands : The Miniscule Criticals  z-2 – z-13 

 

We deal with the miniscule criticals as a group, because, in many ways, they behave like a higher 

degree polynomial of degree between 4 and 6 depending on the situation. 

 

We start by looking at z-2, and z-13 at the large bulb we investigated in fig 7. When we examine 

the miniscules, we find this has become a towering amorphous structure, I will call the ‘ant’, 

indicating interference between several critical points. On z-13 this has bulbs, indicating these 

regions are quadratically sensitive to it, which also have satellite Mandelbrot sets on their 

dendrites (*), as does z-15. z-2 also has satellites, indicating the ‘ant’ region is sensitive to most 

of the miniscules. Notably there is no such structure on z1000. In z-2 this region is a fractal 

replicate of the central bay, with three beaches separated by fronds. The ‘head’ region even has 

‘horns’ which effectively replicate the ant structure in the central bay within itself. When we 

look at the whole central bay of z-2 or z-7 we find the ‘ant’ is a fractal replicate of the bay 

repeated for each of the three fronds and fractally on all scales and is also present in the bays of 

the fronds in fig 16. Each of these also has the complex quadratic structure involving several 

critical points we find in the ant. Period 3 bulbs on each of the satellite Mandelbrots generate 

period 3 Julia kernels, confirming the satellite of each critical is determining the Julia dynamics 

in the period 3 web of each set, despite the fact that the Julia set is sensitive only to the location 

of the c value and not the critical point that generated the satellite. This shows each of the critical 

points are collectively determining the Julia dynamics.  
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Fig 10:  Critical points from z-2 to z-15 all show fractal polynomial structures on the boundary of the central valley 

(a–c), including satellite Mandelbrot sets (e-g). These are not only perturbed by the ‘miniscule criticals z-2 – z-13 

but by many of the unreal critical points, many of which have critical values surrounding that of z-15.  The critical 

points z-2 to z-9 have critical values very close to 0 and thus form an atlas of the dynamics in the central valley and 

the zeros.  (d) z-2 classifies the differing central valley dynamics between points 1 and 2 in (a). Period 3 bulb 

dynamics of the satellite Mandelbrots of the three critical points each show distinct regions of period 3 dynamics in 

their Julia dynamics (h-k), confirming all three critical points leave their mark on the Julia set. Only that of z-2 

continues into the central basin. (l) The central bay for z-2/z-7 showing the ‘ant’ is one of three fractal bay 

structures, which are repeated fractally on all scales. (m) A satellite for z-7 at the head of the ant, confirming the 

head and head cusp are sensitive to the ‘miniscules’, particularly z-2 as shown in fig 11. Its period 3 Julia kernel web 

(n) is covering the central valley. 

 

The effects of each however differ. z-2, and with it, the lesser miniscules, form an atlas of the 

dynamics passing close 0, as their critical values are very close to 0.  Hence they determine 

dynamics in the central bay. Sampling the point 1 on the ‘ear of the z-2 ‘ant’ which lies outside 

the z-13 ‘ant’ gives a connected black centre while the point 2 lying outside all three has a 

chaotic centre. Notice that the ‘ant’ is absent in M and indeed the asymptotic plateau in all the 

Julia sets is brown indicating escape there. But only in z-7 and z-2 is the web of the period 3 

kernel connected across the central basin. We thus can see in the Julia sets the regional actions of 

three distinct critical points simultaneously, central basin, asymptotic plateau and local 

polynomial. 

 

The collective evolution of the miniscules and their undulation in the Mandelbrot sets with their 

critical values is clearly portrayed in the dynamics of the apex of the innermost bay, where the 

fixed value in the neighbourhood of z = -16 points to the blunt frond apex for all of the 

miniscules, which undulate in position with their critical values, but becomes a quadratic cusp 

for z = -15, which also dominates the local dynamics of unreal critical points, the asymptotic 

plateau, and z-19. However z-2 does have a quadratic cusp with bulbs at the head of the ant and 

its sibling bays. 
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Fig 11: z-15 as critical transition All the critical points from z-2 to z-13 have their fixed value corresponding to the 

zero at -16 converging to the tip of the basal frond, however when we reach z-15, the entire basin boundary turns 

into a quadratic cleft. This is conserved by critical points with critical values in the range 0.4-33.8 as illustrated 

below for z1000 and z95 and is also true for z-19, with a critical value of 33.8, indicating that z-15 is influencing the 

dynamics of all these in this region. At z-17, the central valley becomes flooded (see fig 17). However z-2 has a 

quadratic cusp on the head of the ‘ant’ (top right). All these structures differ from the naked cusps at the tip of 

exponential fronds in the black ocean of the Mandelbrot set (lower right). Images all to scale of 0.02, except for the 

centre left and right. The transition can be viewed at the website as a video showing interaction between an evolving 

fractal process interacting with a ‘static’ representation of the asymptotic limit Mandelbrot set. 

 

We now turn to decoding the collective dynamics of the miniscules and their influence on the 

dynamics near the real line. Mandelbrot satellites of the miniscules occur in a number of fractal 

regions n the real line, several of which are fractal replicates of the central valley (see fig 14), 

which have complex amorphous regions which originate from the overlapping effects of the 

critical points on one another’s dynamics. These regions can be distinguished from a number of 

fractal regions that are simple basins with a single periodicity, by colouring according to the 

incipient period. This shows the compound sets have varying periodicities. We can then look for 

satellite Mandelbrots to confirm they are a Mandelbrot compound structure, as illustrated in fig 

12. 
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Fig 12: Complex sets displaying overlapping effects of several critical points show their nature through each of them 

possessing well-formed Mandelbrot satellites, despite having an amorphous morphology. (Top left) region 

connecting a frond to the central valley. (Top right and below) fractal replicates of the central valley displaying 

differing degrees of critical point interference (3 and 4 in overview fig 14). Highlighting incipient periodicities 

(middle row) helps to distinguish complex sets from the blue exponential islands (left) all of which have simple 

fixed point dynamics. 

 

Figures 12, 13 and 14 show how the relative dynamics of the miniscules can be revealed in 

stages, by examining each of the regions in positions labeled 1-4 in the top of fig 14. These are 

each fractal replicates of the central valley and expose the relative dynamics of the miniscules, 

all of whose principal points are submerged in the central bay.  

 

The largest at position 3 is the most merged and shows a quadratic satellite only for z-13, the 

most far-flung of the set. The next at position 4 has a greater degree of separation, as shown in 

fig 12, but still the dynamics is merged, with only z-11 showing a clear satellite, despite others 

having sub-satellites on their surrounding dendrites, confirming this region is a compound 

Mandelbrot. 

 

Things become much clearer in region 1, where we can see from fig 13 that each of the first four 

criticals have satellites which are oscillating in position in relation to their critical values, as we 

saw in fig 11.  We lay those of the first four critical points in this region out in sequence, so we 

can see each as a well-formed ‘black heart’, each with sensitivities to the location of the ‘black 

hearts’ of the other critical points. The evolution of these satellites is confirmed by the varying 

dynamics of the corresponding Julia sets shown on the right. 
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Fig 13: (Left) the local Mandelbrot islands of the first four critical points on the real axis in the fractal replicate 1 in 

fig 14. (Right) Central valley region of the  corresponding Julia sets approximating the c values confirms all four 

parameter planes influence the Julia dynamics.  

 

 
Fig 14: Fractal replicate of the central valley (2) at top shows the evolution of the ‘miniscule’ critical points, which 

is otherwise hidden because their fixed values fall into the central bay’s blackness. A consistent evolution of the 

Mandelbrot satellites down the fronds is shown, with one hump and one trough for each successive frond. 
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When we move to region 2 of fig 14 we find a clear case of fractal separation of the satellites, 

which now follow a sequence we shall also see extended for all the real criticals in relation to the 

fronds. Each of the successive criticals forms a graded sequence, with one max-min pair to each 

of the three frond-pairs, moving from the outermost in the bay to the innermost, laying bare the 

dynamics of the miniscules, which was submerged in the central bay. 

 

The satellites have base periodicity 3 in their central region, when compared against the period 3 

satellite on the negative real dendrite of the quadratic of fig 35, as shown in fig 15.  Evidence of 

this can also be seen in the Julia sets, by comparison with a base Julia set for the quadratic 

satellite. This explains how these satellites can exist in a region where the derivative is large, 

because for a period 3 cycle we calculate the derivative by the chain rule as a product of the 

derivatives at the three points in the cycle, one of which is close to zero and has a tiny derivative. 

 

 
Fig 15: Period-sensitive colouring of Mandelbrot satellites from replicates 1 (top) and 2 (lower left) for z-4 both 

coincide with the period 3 satellite on the quadratic Mandelbrot set, confirming they are period 3. This both 

coincides with the forms of the Julia sets in fig 14, which show real period 3 dynamics and explains how they can 

exist in a region where the derivative has absolute value greater than 1, because other steps in the period 3 cycle 

include points close to 0 with tiny derivatives, ensuring the period 3 derivative, calculated by multiplying the three 

derivatives, by the chain rule, confirms the 3-period is attractive overall. For example in the region 2 satellite 

approximation gives  -17.8120 > -19.8882 > -4.9145 … , with overall derivative -8.8565*101.3019* 

1.5049e-05 = -0.0135. 

 

This evolution is replicated in the fractal bays present in each frond, as illustrated in fig 16 where 

there is a homologous evolution in the base of the valley y ~ 20. The dynamics in this valley are 

very similar to those of y ~ 13, in fig 8, for both z-2 and z-15. 
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Fig 16: ‘A Garden Enclosed is my Beloved’ – Base of fractal valley around y ~ 20 (1 right). The evolution of the 

‘miniscule’ critical points z-2 (*)  - z-13 (last larger scale) is also presented in the fractal valleys of the fronds.  The 

basin area also supports satellites, as shown in the inset right located at 2 and is a partial homolog of the ‘ant’. 

 

(c) Lofty Peaks of Altiplano – The Vast Criticals 

 

We now enter a sparse mountainous landscape heading outside the central valley, where the 

critical values and derivatives become exponentially huge and the transfer function begins to 

cause large translations, far into the positive and negative reals. 

 
Fig 17: Once we arrive at z-17, the landscape becomes sparse, the central valley becomes submerged and the fronds 

truncated. The innermost pair of fronds meet in a Mandelbrot set at the principal point (a,b), whose period 3 bulbs 

generate a Julia set (c,d) with period 3 kernels. The valleys in each frond also have fractal replicates of the 

Mandelbrot set in the central valley in the same relative position (e,f), Julia set (g), however this is not at the fixed 

value, which corresponds to the tip of the corresponding frond (h), with Julia set (i) having a touching frond pair. 

Zeta Misiurewicz points thus include the tips of fronds as well as dendrite n-hub points (see figs 20-22), as laso 

noted in fig 11. 

 

The case of z-17 in fig 17 shows the entire central valley flooded back to the fourth frond pair 

where the two fronds meet in a single Mandelbrot satellite. A c value in the period 3 bulb of this 

gives an equally sparse Julia set with a period 3 Julia kernel held between the same two fronds. 

This process is fractally replicated in the valley in each frond, with an isolated satellite at the 

same frond pair.  This is however not the location of the fixed values , which lie at the tips of 

successive fronds and generate Julia sets in which a frond pair are just touching at their tips. This 

is consistent with the principal point being the only fixed value guaranteed to be attracting. 
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Fig 18: z-19 shows a further alpine displacement. The central valley is now displaced from a second valley – the 

‘principal valley’ containing the principal point (1 f) and fixed values far to the left, (a). Its Mandelbrot set (b,c) is 

now at the horizontal fusion between successive conjoined frond ridges (b). The Julia set of a period 3 bulb of the 

principal Mandelbrot (g,h) shows homlogous structure. The fixed value at 2 in (a) points to a fractal recursion of 

sub-valleys at 1 in (d) rather than to the locus 2 in (d) where there is a Mandelbrot satellite in the same relative 

position as in the principal valley (e) with period-3 Julia (i,j,k). This continues with fractal replicates in successive 

‘unreal’ fronds (l). 

 

When we move on to z-19, the displacements have become even more acute. The transfer 

function now places the principal point and fixed values far into the negative, forming a shadow 

valley the ‘principal valley’ separate from the central valley.  It is here we find the principal 

Mandelbrot set now nestled horizontally between two successive fused frond ridges, rather than 

vertically in a frond pair as previously. As before, his pattern is fractally replicated in the valley 

in each frond. 

 

 
Fig 19: z-21 and z-23. The pattern of exponentiating maxima and minima corresponding to the series of fronds now 

continues with the maxima and minima following the structures of z-17 and z-19 displaced by ever huger positive 

and negative real translations. 
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The alternating pattern between z-17 and z-19 becomes a continuing sequence, evident in z-21 

and z-23, where the central valley has now become entirely lost from view, enabling us to predict 

the dynamics of all subsequent criticals. 

 

 
Fig 20: The unreal critical at z23 has its principal point well into the black ocean (+ top left), so we do not see 

distinctive features in its neighbourhood. The fixed values in the central valley lie outside the black ocean and 

correspond to two different types of M-points, the top two appearing as dendrite hubs and the other two are 

recursive fractal centres. For example the fixed value of the lower image (*) points to a valley at the base of a fractal 

valley ad infinitum.  The top three all have fractal symmetries consistent with period 3. The Julia set of the top 

centre one (right) shows that this point is also an organizing centre of Julia dynamics in the neighbourhood of the 

fixed value (top right). 

 

(3) Shang-ri-La – The Unreal Criticals 

 

We now turn our attention to the unreal criticals interspersed between the notorious non-trival 

zeros on the critical line x = ½, a little to the right of the zeros, with values from x ~ 0.78 - 2.4. 

 

The locations of the critical points are generally to the right of the critical line and since their 

critical values are small their principal values lie close to the critical points in the Mandelbrot 

ocean. However some of them that are close enough to the chaotic landscape create local bays 

with quadratic Mandelbrot shorelines similar to the dynamics of z-15 in the central bay. 

 

The first unreal critical z23 has a real part of x = 2.4 and shows little evidence of polynomial 

dynamics in the bay. All its fixed values in the central valley lie in chaotic territory, either at 

apparent dendrite hubs or loci of an endlessly recursive fractal process. The derivative function 

confirms these should all be repelling and thus constitute Misiurewicz points. All of those off the 

real axis appear to have period 3 symmetry.  The Julia sets generated by these fixed values 

display a centre at the same fixed value with homologous dynamics. 
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The dynamics in the Julia set of fig 20 demonstrates that critical points far away from the central 

valley, can influence the dynamics there around their fixed values. The Julia parameter is simply 

the M-point corresponding to the fixed value on the boundary of the central valley, not the unreal 

critical point z23, yet the distant unreal critical is leaving its mark on the Julia set defined by a c 

value in the central valley. This shows the ‘Arizona effect’ – the humming you hear on the 

telegraph wires out in the silent desert is a superposition of vibrations potentially coming all the 

way from California. In a similar way, the complex boundary of the central valley for each 

critical point is a combined ‘whispering’ of all the critical points, both real and unreal, which is 

why it is complex and sometimes highly amorphous. We shall see later that there are often 

Mandelbrot satellites in the neighbourhood of repelling fixed values, but for additive unreal 

criticals, these may all be submerged in the Mandelbrot ocean. 

 

 
Fig 21: Dynamics of z31.  (Upper sequence) shows the local basin of the critical point with quadratic bulbs, and a 

series of exploded views from the starred points to a Mandelbrot satellite whose Julia set has a (low resolution) 

period 3 kernel web. (Lower sequence) the central valley has two fixed values lying within the black ocean and only 

one (centre) on the boundary, pointing at a triple vertex of three clefts at the branching structure inset. The same 

structure on z-7 is a fractal version of the central bay of the same kind as the ‘ant’ of fig 10 and the branched pattern 

is also visible as distortions of the z-15 quadratic bulbs in the top of z95 in fig 11.  

 

With z31, the second unreal critical, with a real value of 1.29, we begin to see richer polynomial 

dynamics. The bay bounding the region of the principal point now has a series of quadratic bulbs 

and these have dendrites supporting well-defined Mandelbrot satellites, which also give rise to 

period 3 Julia kernels from their period 3 bulbs as shown in fig 21.  In this case two of the fixed 

values in the central valley lie in the ocean and only the centre one tends to a boundary M-point, 

this time at the triple vertex of three frond tips, (Mandelbrot cusps), with a Julia set having 

homologous dynamical centres. 
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As a third example, we have z95, which has a low real value of 0.78 and lies in a small focused 

bay with prominent quadratic bulbs, having dendrites supporting chains Mandelbrot satellites, 

whose period 3 bulbs generate confirmatory period 3 Julia kernels, establishing classic 

polynomial dynamics associated with an isolated critical point. 

 

Again, this has only one of its fixed values in the central basin on shore, where it forms a fractal 

centre, again of period 3 nature. This suggests that much of the complex amorphous structure in 

the shoreline of the central bay is a product of the interaction of a large number of the unreal 

criticals with similar fixed value locations to those of z-15 acting together in superposition. 

 

 
Fig 22: Dynamics of z95 (* top left). In the upper sequence is shown the location of z95=0.78+95.29i with critical 

value 0.43+0.078i with real part lower than that of z-15. The low real part of the critical point’s coordinates causes it 

to be nestled closely towards the shore of the ocean, giving rise to a well-formed quadratic basin highlighted to show 

the iterations around the unreal critical (+). A series of exploded views from the bulb (*) leads to a well-formed 

satellite Mandelbrot, whose Julia set has well-defined web (lower right) of period 3 kernels. The lower sequence 

shows only the most left-hand fixed value lies on shore and gives rise to a fractal centre, again of period 3 

symmetry, whose Julia set again has a homologous dynamic around the location of the fixed value. 
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