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Abstract

Maxwell’s equations are invariant not only under the Lorentz group but also under the conformal
group. Irving E. Segal has shown that while the Galilei group is a limiting case of the Poincaré group,
and the Poincaré group comes from a contraction of the conformal group, the conformal group ends
the road, it is rigid . There are thus compelling mathematical and physical reasons for promoting the
conformal group to the role of the fundamental symmetry of space–time, more important than the
Poincaré group that formed the group-theoretical basis of special and general theories of relativity.
While the action of the conformal group on Minkowski space is singular, it naturally extends to
a nonsingular action on the compactified Minkowski space, often referred to in the literature as
“Minkowski space plus light-cone at infinity”. Unfortunately in some textbooks the true structure of
the compactified Minkowski space is sometimes misrepresented, including false proofs and statements
that are simply wrong.

In this paper we present in, a simple way, two different constructions of the compactified Minkowski
space, both stemming from the original idea of Roger Penrose, but putting stress on the mathemat-
ically subtle points and relating the constructions to the Clifford algebra tools. In particular the
little-known antilinear Hodge star operator is introduced in order to connect real and complex struc-
tures of the algebra. A possible relation to Waldyr Rodrigues’ idea of gravity as a plastic deformation
of Minkowski’s vacuum is also indicated.

1 Preliminaries

1.1 Notation

Let E be a real 6–dimensional vectors space endowed with a bilinear form (x, y) of signature (4, 2). Let
Q be the diagonal 6× 6 matrix

Q = diag (1, 1, 1,−1, 1,−1). (1.1)

We will call a basis ei in E orthonormal if (ei, ej) = Qi,j .
1 Any two orthonormal bases of E are related

by a transformation from the group O(4, 2) :

O(4, 2) = {R ∈ Mat(6,R) : R Q tR = Q}. (1.2)

When a preferred orthonormal basis is selected in E, then E is denoted by E2,2. For x ∈ E4,2 we write

Q(x) = txQx = (x1)2 + (x2)2 + (x3)2 − (x4)2 + (x5)2 − (x6)2. (1.3)

Let G be the diagonal 4 × 4 matrix G = diag(+1,+1,−1,−1). Let V be a four–dimensional complex
vector space endowed with a pseudo–Hermitian form (·|·) of signature (2.2). A basis ei of H2,2 is said to
be orthonormal if (ei|ej) = Gij . Any two orthonormal bases in H2,2 are related by a transformation from
the group U(2, 2) :

U(2, 2) = {U ∈ Mat(4,C) : UGU∗ = G}. (1.4)

When a preferred orthonormal basis is selected in V, then V is denoted by H2,2.

1According to our conventions, in E4,2, the first four coordinates x1, x2, x3 and x4 will correspond to Minkowski space
coordinates x, y, z and t, while the coordinates x5, x6 will correspond to the added hyperbolic plane E1,1.
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1.2 The algebras Cl4,2 ≈Mat(4,R), Cl+4,2 ≈Mat(4,C), and the groups SO+(4, 2)
and U(2, 2)

Define the following six 4× 4 antisymmetric matrices Σα = (ΣABα ):

Σ1 =

(
0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

)
Σ2 =

(
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)
Σ3 =

(
0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

)

Σ4 =

(
0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

)
Σ5 =

(
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

)
Σ6 =

(
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

)
The following identities hold:

Σijα =
1

2
εijklGkmGlnΣmnα , (1.5)

where α = 1, ..., 6; i, j, k, l,m, n = 1, ..., 4.
Recall that for an antilinear operator A acting on a pseudo-Hermitian space V the adjoint A∗ is defined
by the formula: (Av|w) = (A∗w, v). The following proposition holds:

Proposition 1.2.1. Define the following six complex matrices

Γiαk = Σα
ijGjk, (α = 1, ..., 6; i, j, k = 1, ..., 4). (1.6)

Explicitly:

Γ1 =

(
0 0 i 0
0 0 0 −i
i 0 0 0
0 −i 0 0

)
Γ2 =

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
Γ3 =

( 0 0 0 −i
0 0 −i 0
0 −i 0 0
−i 0 0 0

)
Γ4 =

(
0 i 0 0
−i 0 0 0
0 0 0 i
0 0 −i 0

)
Γ5 =

(
0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

)
Γ6 =

(
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

)
.

Let Γα be the antilinear operators on H2,2 defined by the formula:

(Γαf)i = Γiαj f
j , f = (f i) ∈ H2,2.

Then the antilinear operators Γα are anti–self–adjoint: Γα = −Γ∗α, and satisfy the following anti–
commutation relations of the Clifford algebra of E4,2 :

Γα ◦ Γβ + Γβ ◦ Γα = 2Qαβ .

The space H2,2 considered as an 8–dimensional real vector space carries this way an irreducible represen-
tation of the Clifford algebra Cl4,2. The Hermitian conjugation in H2,2 coincides with the conjugation of
Cl4,2. The space H2,2 considered as a 4-dimensional complex vector space carries a faithful irreducible
representation of the even Clifford algebra Cl+4,2.

For each x = (x1, ..., x6) ∈ E4,2, let X be the matrix

X =

6∑
α=1

xαΓα, (1.7)

then

X =


0 ix4 + x6 ix1 + x2 −ix3 − x5

−ix4 − x6 0 −ix3 + x5 −ix1 + x2
ix1 + x2 −ix3 + x5 0 ix4 − x6
−ix3 − x5 −ix1 + x2 −ix4 + x6 0

 (1.8)

We have

X̄i
j =

1

2
εimnkGmjGnl X

l
k, (1.9)
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and
det(X) = det(X̄) = Q(x)2, (1.10)

where X̄ is the complex conjugate matrix.

2

We recall [2, p. 387, Definition IX.4.C] that the group Spin(E) consist of products of even numbers of
vectors x ∈ E with Q(x) = 1, and even numbers of vectors y ∈ E with Q(y) = −1. The action of Spin(E)
on E ⊂ Cl(4, 2) is given by x 7→ π(g)xg−1, which is the same as gxg−1 when g ∈ Spin(E) ⊂ Cl+4,2.3 If x, x′

are two normalized in E, then their product xx′ operates on H2,2 via a complex linear transformation
implemented by the matrix XX̄ ′ of determinant one. It follows that, with our identification, the group
Spin(E) coincides with the group SU(2, 2). In fact, for x ∈ E4,2 and U ∈ SU(2, 2, we have UXU∗ = X ′,
where

X ′α = L(U)αβ X
β , (1.11)

where U 7→ L(U) is a homomorphism from SU(2, 2)) ≈ Spin(4, 2) onto SO+(E4,2) with kernel {1,−1, i,−i}.

2 The exterior algebra Λ2H2,2

Let Λ2H2,2 be the (complex) exterior algebra of H2,2. It carries a natural pseudo-Hermitian form:

(x|y) =
1

p!
Gi1j1 ..Gipjpx

i1...ip yj1...jp . (2.1)

If ei is the orthonormal basis of H2,2, we define the following six bivectors Eα ∈ Λ2H2,2 :

Eα =
1

2
√

2
Σijα ei ∧ ej (2.2)

They are normalized:
(Eα|Eβ) = Qαβ . (2.3)

In [3] an antilinear Hodge ? operator has been defined in the case of the Euclidean signature. It can be
readily extended to the pseudo–Euclidean case. Thus we define ? : ΛkH2,2 → Λ4−kH2,2 by the formula:

x ∧ ?y = (x|y)e, x, y ∈
k∧
V, (2.4)

where e = e1 ∧ ... ∧ e4, x ∈ ΛkH2,2, y ∈ Λ4−kH2,2. Notice that we have:

(x| ? y) = (−1)k(4−k)(y| ? x), (2.5)

We easily find that ? ? x = (−1)k(n−k)x, x ∈ ΛkH2,2. It follows that on Λ2H2,2 we have ?2 = 1. Thus
Λ2H2,2, which is a vector space of complex dimension 6 splits into a direct sum of two real 6–dimensional
subspaces

Λ2H2,2 = Λ2
+H2,2 ⊕ Λ2

−H2,2, (2.6)

where
Λ2
±H2,2 = {x ∈ Λ2H2,2 : ?x = ±x}. (2.7)

2 There are several errors in Ref. [1]: in the listing of the matrices Σα, the matrix Σ2 is listed twice; in Lemma 5,
Eq. (31) instead of Qjk should be Gjk; in a formula below, Γα should be Γα; it is stated that the Hermitian conjugation
coincides with the main antiautomorphism, which is incorrect, it should be ‘conjugation’. Also the Lorentz Lie algebra block
matrix at the end of section 8.3 should be in the upper left corner.

3We denote by π (resp. by τ) the main automorphism (resp. antiautomorphism) of the Clifford algebra.
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The multiplication by the imaginary unit i gives a bijective correspondence between these subspaces. The
bivectors Eα are self–dual: ?Eα = Eα, and form a basis in Λ2

+H2,2.
Thus E4,2 can be interpreted in two ways: either as a real linear subspace of anti–

linear transformations of H2,2 determined by the matrices of the form (1.7), or as the
subspace Λ2

+H2,2 of self–dual bivectors in Λ2H2,2, as suggested originally by Kopczyński and
Woronowicz [4], though these authors did not recognize the relation of their reality condition
to the anti–linear Hodge operator (2.5).

2.1 Compactified Minkowski space

Early in the XX-th century Bateman and Cunningham [5, 6, 7] established invariance of the wave equation
and of Maxwell’s equations under conformal transformations. The central role in these transformations
is being played by the conformal inversion, formally defined by

R : (x, t) 7→ (x, t)

x2 − c2t2
. (2.8)

It is singular on the light cone x2 = x2 − c2t2 = 0. More general, special conformal transformations, of
the form RT (a)R, where T (a) is the translation by a vector a in R4, are also singular in the Minkowski
space–time M. In order to avoid singularities the conformally compactified Minkowski space M c - a
homogeneous space for the conformal group SO+(4, 2) is introduced. There are three different, though
related to one another, ways of describing M c : a) The group manifold of the unitary group U(2), b)
The projective quadric defined by the equation Q(x) = 0 in E4,2, and c) The space of maximal isotropic
subspaces of H2,2. Let us discuss briefly the relation between b) and c). The relation to a) has been
discussed in [1].
Let ϕ be the mapping ϕ : E4,2 → Λ+H2,2 defined by ϕ(x) = xαEα. The following lemma holds [1].

Lemma 2.1.1. The mapping ϕ defines a bijective correspondence between generators of the null cone
Q(x) = 0 in E4,2 and maximal isotropic subspaces in H2,2.

In particular, Q(x) = 0, if and only if ϕ(x) is a bivector of the form v ∧ w, where v and w are two
linearly independent, mutually orthogonal, isotropic vectors in H2,2. There is another method of viewing
this correspondence, studied by René Deheuvels in [8, Théorème VI.6.D, p. 283], and generalized by Pierre
Anglès [9]. We start with a brief recapitulation, with a slight change of notation, of the construction given
in [9]. The construction is quite general. but we restrict ourselves to the case we are interested in. Let
E = E4,2, V = H2,2. It is convenient to identify x ∈ E with the antilinear operator ϕ(x) acting on the
spinor space V. Then the following theorem holds:

Theorem 2.1.2. [9, 1.5.5.1.1, p. 45] The mapping

{ isotropic line Rx of E4,2} 7→ maximal totally isotropic subspace S(x) of V is injective

and realizes a natural embedding of Q̃(E), the projective quadric associated with E, into the
Grassmannian G(V, 12 dimV ) of subspaces of V of dimension 1

2 dim V.

The proof goes as follows: given a null vector x ∈ E ⊂ LR(V ) ≈ Cl4,2, there exists another null vector
y ∈ E such that (x, y) = 2. Denoting by x, y antilinear operators on V representing x, y, in LC(V ), (xy)2 =
xy, (yx)2 = yx, and xy + yx = I. Therefore xy and yx are two complementary idempotents in LC(V ).
Evidently we have Im(xy) ⊂ Im(x). Since x2 = 0 we have that Im(x) ⊂ Ker(x). On the other hand, if
v ∈ V is in Ker(x) then v = (xy+yx)v = xyv, therefore Ker(x) ⊂ Im(xy) ⊂ Im(x). It follows that Im(x) =
Im(xy) = Ker(x). Now, owing to the fundamental property of the trace, we have TrR(xy) = TrR(yx). But
since xy and yx are complex linear, it follows that TrC(xy) = 1

2TrR(xy) = 1
2TrR(yx) = TrC(yx). Since

xy and yx are complementary idempotents, it follows that TrC(xy) = dimC(Im(xy)) = dimC(Im(yx)).
Then, from Im(xy)⊕ Im(yx) = V, Im(xy)∩ Im(yx) = {0}, we deduce that dim(Im(xy)) = dim(Im(yx)) =
1
2 dim(V ). In our particular case 1

2 dim(V ) = 2.
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In order to complete the demonstration we notice that (xy)τ = (xy)∗ = yx therefore for all s, t ∈ V
we have (xy s|xy) = (s, (xy)∗yy|t) = (s|yxxy t) = 0. It follows that Im(xy) is a totally isotropic subspace,
thus maximal totally isotropic. On the other hand from the equality Im(xy) = Im(x) we find that this
subspace is independent of the choice of y having the required properties.

In our case the correspondence x 7→ S(x) is not only an embedding, but also a bijection. This
follows form the construction above, the covering homomorphism U(2, 2) → O(4, 2) and the fact that
the pseudo–orthogonal group O(4, 2) (resp. unitary group U(2, 2)) acts transitively on totally isotropic
subspaces of E (resp. of V ) of the same dimension - cf. [10, Corollaire 2, p. 74]

While isotropic lines Rx in E (or maximal isotropic subspaces S(x) in V ) correspond to the points
of the compactified Minkowski space M c, there is an interesting duality: maximal isotropic subspaces
(isotropic planes) in E are in one–to–one correspondence with isotropic (complex) lines in V, and they
correspond to null geodesics in M c.4

2.2 From maximal isotropic subspaces in E to isotropic lines in V.

We will use the method and the results of the previous subsection. Let N be a maximal isotropic
subspace of E. Since, in our case, E = E4,2, it follows that N is two–dimensional. It is then known
[11, p. 77-78] that there exists another maximal isotropic subspace P such that N ∩ P = {0}, vectors
x1, x2 spanning N and vectors y1, y2 spanning P, with the property (xi, yj) = 2δij , i = 1, 2. We define
Pi = xiyi, Qi = yixi, and it easily follows that P 2

i = Pi, Q
2
i = Qi, Pi +Qi = I, and, moreover, Pi and Qj

commute for i 6= j. It follows R1 = P1P2, R2 = P1Q2, R3 = Q1P2, R4 = Q1Q2 are four idempotents with
RiRj = 0, i = 1, 2, 3, 4, and R1 + R2 + R3 + R4 = I. It is easy to see that Tr(R1) = ... = Tr(R4). For
instance

Tr(R1) =
1

2
TrR(x1y1x2y2) =

1

2
TrR(y2x1y1x2) =

1

2
TrR(x1y1y2x2)

= TrC(P1Q2) = Tr(R2),

where we have use the fact y2 anticommutes with x1 and y1, therefore commutes with x1y1. Therefore
we have that dim Im(Ri) = 1. Since Im(R1) ⊂ Im(x1), the subspace Im(R1) is an isotropic line.
Let us now show that Im(R1) depends only on the subspace N and not on the choice of the auxiliary
subspace P or a particular choice of our vectors xi and yi. For this end we first notice that Im(R1) =
Im(x1x2). Indeed, we evidently have Im(x1y1x2y2) ⊂ Im(x1x2). On the other hand assume that s ∈
Im(x1x2), then, for some t ∈ V, we have

s = x1x2 t = x1x2(x1y1x2y2 + x1y1y2x2 + y1x1x2y2 + y1x1y2x2).

Multiplying, using commutation properties and nilpotency of xi, we find that only the last term survives
and it can be written as

x1x2x2y1x1y2x2 t = x1y1x2y2(x1x2 t).

Therefore s ∈ Im(R1), and so we have shown that S(x1, x2)
df
= Im(R1) = Im(x1x2) does not depend on the

choice of yi with the properties as above. Finally, if x′i =
∑2
j=1 aijxj is a nonsingular transformation of the

basis xi of N, then a simple calculation gives that x′1x
′
2 = det(a)x1x2, and therefore Im(x1x2) = Im(x′1x

′
2).

There is an alternative way of looking at this correspondence: let v be a non–zero null vector in V,
and let N(v) be defined as:

N(v) = {x ∈ E : xv = 0}. (2.9)

Then N(v) is a maximal isotropic subspace of E and Cv corresponds to N(v) according to the construction
above. Indeed, it follows immediately from the construction that S(x1, x2) ⊂ N(v). To show that, in fact,
equality holds, it is enough to show that N(v) is an isotropic subspace of E. If x2 6= 0, and x ∈ N(v),
then for all w ∈ V we have 0 = (xv|xw) = −(w|x2v), and therefore we must have x2 = 0.

4It is important to notice that naturally Mc carries only a conformal structure rather than a Riemannian metric. But
null geodesics are the same for each Riemannian metric in the conformal class.
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2.3 E4,2 as the arena for Lie spheres of R3

The space E4,2 carrying a natural linear representation of the conformal group O(4, 2) has been introduced
by Sophus Lie in 1872 [12], and developed further by W. Blaschke in 1929 [13]. We will follow the modern
presentation of Ref. [14], though we will change the coordinate labels so as to adapt them to our notation
introduced in section 1.1. It is instructive to see how the Lorentz, Poincaré and the conformal group
naturally enter the scene without any philosophical load of Einstein’s relativity.
We can assume absolute time. We can also assume absolute space, its points represented by coordinates
of R3, and compactified by adding one point: ∞, and absolute time, represented by points of R. An
oriented sphere with center at x and radius r can be also interpreted as the coordinate of an ’event’ in
space–time, taking place at x at time r/c.5 We allow for r to be negative, with the interpretation that
negative radius corresponds to the negative orientation of the sphere. The radius r can be interpreted
as the radius of a spherical wave at time t, if the wave, propagating through space with the speed light,
was emitted at x at time t = 0. The image being that when the spherical wave reduces to a point, it
turns itself inside–out, thus reversing its orientation. As a limit case there will also be spheres of infinite
radius - represented by oriented 2–planes - these will correspond to events that took place in infinitely
distant past or future. Points (spheres of zero radius), spheres, and planes (spheres of infinite radius) are
bijectively represented by generator lines of the null cone in E4,2 as follows (cf. [14, p. 16]):

Euclidean Lie

points: x ∈ R3 [(x, 0, 1+x2

2 ,− 1−x2

2 , 0, 0)]
∞ [(0, 0, 1, 1)]

spheres: center x, signed radius t [(x, t, 1+x2−t2
2 ,− 1−x2+t2

2 )]
planes: x · n = h, unit normal n (n, 1, h, h)]

Table 1: Correspondence between Lie spheres and points of the compactified Minkowski space. [x]
denotes the equivalence class modulo R∗.

3 Myths and facts

One of the ‘myths’ we have already encountered above. Minkowski space and its compactification arise
naturally through the studies of geometry of spheres in R3 - it not necessary to invoke Einstein’s relativity
principle, or restrict the range of available velocities, as it is usually being done. Second myth, more serious
one, can be summarized in one sentence: ‘conformal infinity’ is the result of the conformal inversion of
the light cone at the origin of M.’ Such a statement can be found, for instance, in [15, p. 127], where the
authors write:

“... after compactification the tangent space Tx(M) is enlarged by the point at infinity y with

coordinates (0, 0, ..., 0, 1) and by the isotropic cone Cx, with vertex at this point y whose equation is

the same as the equation of the cone Cx, namely gijx
ixj = 0.’(...) To include these points in the

domain of the mapping defined by the inversion in Rnq , we enlarge the space Rnq not only by the

point at infinity, ∞, corresponding to the point a but also by the isotropic cone C∞ with

the vertex at this point.

Conformal inversion is implemented by O(4, 2) transformation (x, t, v, w) 7→ (x, t,−v, w). Conformal
infinity of M is represented by generator lines of the quadric Q(x) = 0 of the form (x, t, v, v). According
to Table 1, the light cone x2 = t2 is represented in E by generator lines of the form [(x, t, 1/2,−1/2)].
Applying conformal inversion we get [(x, t,−1/2,−1/2)].Clearly the whole 2-sphere S2 of [(x, 1, 0, 0)],
x2 = 1 is missing. This two–sphere is located at conformal infinity and is pointwise invariant

5We will assume the system of units in which c, the speed of light, is numerically equal to 1.
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under the conformal inversion. The third myth is closely related, and it is usually summarized by
giving to conformal infinity the name ‘light cone at infinity’ [16] or, sometimes, ‘double light cone at
infinity’. For instance in [?, ] we can find the following paragraph:

From the point of view of the conformal structure of space-time, “points at infinity” can be treated
on the same basis as finite points. Minkowski space can be completed to a highly symmetrical conformal
manifold by the addition of a null cone at infinity- the “absolute cone”.(...) Let xµ be the position
vector of a general event in Minkowski space-time relative to a given origin O. Then the transformation
to new Minkowskian coordinates x̂µ given by

x̂µ =
xµ

xαxα
, xµ =

x̂µ

x̂αx̂α
, (3.1)

is conformal (“inversion with respect to O”). Observe that the whole null cone of O is transformed to

infinity in the x̂µ system and that infinity in the xµ system becomes the null cone of the origin Ô of

the x̂µ system. (“Space–like” or “time-like” infinity become Ô itself but “null” infinity becomes spread

out over the null cone of O.) Thus, from the conformal point of view “infinity” must be a null

cone.

For instance Huggett and Tod write [17, p. 36]:

“This is the intersection of N with a null hyperplane through the origin. All such hyperplanes are

equivalent under O(4, 2) so to see what these extra points represent, we consider the null hyperplane

v+w = 0. ... we see that the points of M corresponding to generators of N which lie in this hyperplane

are just the null cone of the origin. Thus PN consists of τ(M) with an extra cone at infinity.”

Not only they write so in words, but also miss this S2 in their formal analysis. A pictorial represen-
tation of the conformal infinity (suppressing just one dimension) is that of one of the degenerate cases of
Dupin cyclides6 - so called needle (horn) cyclide [18, Fig. 6, p. 80], [14, Fig. 5.7, p. 156], or, in French,
croissant simple [19]: In fact we have the following theorem:

Figure 1: Pictorial representation of the conformal infinity with one dimension skipped. ‘Double light
cone at infinity’ , with endpoints identified. While topologically correct such a name is misleading as it
suggests non differentiability at the base, where the two half-cones meet - cf. [1]. The ill-fated sphere S2

is marked.

6The exact connection of these two concepts is not known to the present author at the time of this writing.

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com

Published by QuantumDream, Inc.



Prespacetime Journal| February 2012 | Vol. 3 | Issue 2 | pp. 131-140 138

Jadczyk, A. Conformally Compactified Minkowski Space: Myths and Facts

Theorem 3.0.1. The conformal infinity of M, isomorphic do the set {U ∈ U(2) : det(I − U) = 0}
can be described as the three-dimensional surface in R5, coordinates (t, x, y, z, v, w), defined by a pair of
quadratic equations

x2 + y2 + z2 + v2 = 1, t2 + w2 = 1. (3.2)

With one space dimension (say, z) skipped, it can be faithfully represented in R3 as a generalized, horned,
Dupin’s cyclide.

4 Concluding comments

We discussed, briefly, several interesting properties of the compactified Minkowski space - an important
homogeneous space for the conformal group, the group of symmetries of Maxwell equations discovered
long ago. Conformal group appears to be important in several areas of physics, mathematics, also in
computer graphics and pattern recognition. It is quite possible that its full potential has not yet been
exhausted. One of the interesting properties of the conformal group is that it is the first element in a
sequence of group contractions [20]: conformal group, Poincaré group, Galilei group. The Lie algebra of
the conformal group, as demonstrated by I. Segal in the final part of his 1951 paper [21]7, does not result
as a limit of some other Lie algebra. Segal has constructed the foundations of his cosmological model
[23] starting from the compactified Minkowski space and its universal covering space, a model with some
difficulties, but also with some promises if connected with elementary particle physics (cf. [24], (see also
R. I, Ingraham, via a somewhat different, but related path [25], and a recent paper extending the idea of
Segal’s chronogeometry in new directions, by A. V. Levichev [26]). Segal himself did not really touch the
problem of placing gravity within his framework. But recent papers (cf. [26] and references therein) seem
to point at the possibility of realizing gravity along the lines suggested also by Waldyr Rodrigues in his
monograph written with V. V. Fernández [27]: gravitation is somehow related to ‘quantum fluctuations
of the vacuum’. The geometrical arena for such a description can be either Minkowski space or, what
seems to be more attractive to the present author, one of the homogeneous spaces of the conformal group
(or its covering).
The final remark concerns the question whether the choice of signature for Minkowski space, (1, 1, 1,−1)
vs. (−1,−1,−1, 1) may have any physical significance. It seems that this question is unsettled yet. We
refer the Reader to [28, 29, 30], where different aspects of this problem are being discussed.
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7Cf. also [22]
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[8] René Deheuvels, Tenseurs et Spineurs , Presse Universitaires de France, Paris, 1993

[9] Pierre Anglès, Conformal Groups in Geometry and Spin Structures, Birkhauser, Progress in Mathe-
matical Physics, Vol. 50, 2008
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