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Abstract

In this review, we present some fundamental claksind quantum phenomena in view of time fractional
formalism. Time fractional formalism is a very ugetool in describing systems with memory and del&i
hope that this study can provide a deeper undelistgnof the physical interpretations of fractional
derivative.
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Thiswork is dedicated to the soul of my father

1. Introduction

Fractional calculus is a very useful tool in ddsicig the evolution of systems with memory, whichitglly

are dissipative and to complex systems. Completesysinclude very broad and general class of system
and materials. For instance, glasses, biopolyméisjogical cells, porous materials, amorphous
semiconductors and liquid crystals can be considae complex systems. Scaling laws and self-similar
behavior are supposed to be fundamental featuremplex systems. In recent decades the fractional
calculus and in particular the fractional diffeiahiequations has attracted interest of researichesveral
areas including mathematics, physics, chemistiglply, engineering and economics [1-4].Applicatiarfis
fractional calculus in the field of physics havengal considerable popularity and many importantites
were obtained during the last years. Some of thasaof these applications include: classical mdchd8-

11], classical electromagnetism [32-38], specildtidty [39, 40], non-relativistic quantum mechesi[43-

50] and relativistic quantum mechanics and fielebtly [51-58]. Despite these various applicatioherd are
some important challenges. For example physicatpnetation for the fractional derivative is notrqaetely
clarified yet. In this review, we aim to presenimsoaspects of physical interpretation for the foazl
derivative by studying the behavior of fundamewtaksical and quantum phenomena within the framewor
of time fractional formalism. In the following, ftional calculus is briefly reviewed in Sec. 2. Thactional
relaxation and oscillation process are discuss&km 3. Time fractional Maxwell's equations aresgnted

in sec. 4. In Sec. 5 time fractional Schrodingaratipn and time fractional Pauli equation are givénally

in Sec. 6, we will present our summary and discussi

2. Mathematical tools: Fractional calculus

Although the application of Fractional calculus laésacted interest of researches in recent decéddess a
long history when the derivative of ord@r5 has been described by Leibniz in a letter to Lfitasin 1695.
Fractional calculus is the calculus of derivatieesl integrals with arbitrary (real or even complexjer,
which unify and generalize the notions of integetten differentiation and n-fold integration, whitlave
found many applications in recent studies to madedriety processes from classical to quantum phy#i
the following, we briefly revisit essentials of ¢teonal calculus.

X
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2.1. The Caputo fractional derivative operator

The commonest way to obtain a fractional differ@ndquation for describing the evolution of a tygbic
system is to generalize the ordinary derivativethia standard differential equation into the fraadio

derivative. Fractional differential equation canibelude for instance derivative of ord)zB,\/E , 771 and so
on. Since the age of Leibniz various types of foaal derivatives have been proposed. In factddfanition

of the fractional order derivative is not uniquedahere exists several definitions including, Gratoa

Letnikov,Riemann-Liouville, Weyl, Riesz and Capuitw fractional order derivative. Fractional diffetel

equations defined in terms of Caputo derivativeguire standard boundary (initial) conditions. Aldee

Caputo fractional derivative satisfies the relevanaiperty of being zero when applied to a constamt.these
reasons, in this paper we prefer to use the Cdpattional derivative. The left (forward) Caputadtional
derivative of a time dependent functibrt) is defined by

a>0t >0 °DSf =z j(t e

Where, n is an integer number aadis the order of the derivative such that ngl<n andf ™ (r) denotes
the n-th derivative of the functidn(r) . For example whew is between 0 and 1, we have

0<a<1{D/f () == j( of (T) (2)

As we can see from the above equations Caputoalivimplies a memory effects by means of a
convolution between the integer order derivative ampower of time. Also the Laplace transform t@@a's
fractional derivative gives

LD () =SH9 - 357 M0) ©

where, F (s) is the Laplace transform bft) .

2.2. The Mittag-Leffler function

During the recent years the Mittagffler (ML) function has caused extensive interest agnuinysicist due
to its role played in describing realistic physisgstems with memory and delay. It was originatilyoduced
by G.M. Mittag-Lefler in 1902[5]. The ML function is such a one-partandéunction defined by the series
expansion as

k

zeC,a>0E,(z)= ZW (4)
k=0

And its general two-parameter representationsfiaett as

k
z€C,BEC,a>0E, 4(z)= ZW (5)
k=0
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whereC is the set of complex numbers ahda ) denotes the Gamma function. This function isdot fa
generalization of the exponential function. For repée, for the special case @f=1, the Mittag-Leffler

function Eq. (4) reduces to the exponential funcig(z) =e”* .

Furthermore, since the ML function generalizes theonential function, the Euler identity for an
exponential function with a complex argument €€.=cos@ )+i sin@ ) can also be written for the ML
function in a similar manner. So we have

E, (16)=cos, @)+ sin, @) ©
Wheresin, (¢)and cos, @) are sine and cosine ML functions respectively defthed as
) B o0 (_1)n (6)2n+l B o (_1)n (0)2n
6)= , 0 W S
sin, ©) nZ;)I'((Zn +1a +1) cos, €) nZ:(:)I'(ch”l) )

Also, it is notable that although exponential fumet possesses the semigroup property (i.e.,
e(*?2) =e®e®z) the functionE,(az”) does not possess the semigroup property in gef@rdthis
property leads to important results in fractionaligtum mechanics [48]).Mittag-Leffler function, as
generalized exponential function, naturally arisesthe solutions of ordinary differential equation$
arbitrary (non-integer) order. Therefore the Laplaransform for ML function will be very useful golving
fractional differential equations:

§ 1577/
L{to™#E MMt} = ®)
{ ap ( ‘7’)} (Sa iﬂ)mﬂ

Wheres > |)l|§ .

3. Classical mechanics: fractional relaxation andréctional oscillation

The fundamental processes in physics are desdmpeduations for the time evolution of a quanXt{t)in
the form:
X O - ) (©)

dt
wherel. can beboth linear or nonlinear operator. For instati@re are many relaxation phenomena in
nature whose relaxation function obeys the simpfg@imate equation

10
de¢)+xa):0 (10)
dt
We can write the above equation as
dx (t) 1
=——X(t
ot - (t) (11)

t
The solution of the above equation is the normdlizgponential Debye-relaxation function (kdt) =e 7),
with relaxation time .However, there are some experimental evidenceéselaxation in several complex
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disordered systems deviates from the classicalrexpi@l Debye pattern [12-24]. Nowadays, it has/edo
that the fractional relaxation equation can be ecassful mathematical construct that reflects tlanm
features of evolution of such systems. The comnioway to obtain a fractional differential equatitor
describing the evolution of a typical system ig¢meralize the ordinary derivative in the standhfférential
equation into the fractional derivative

d 14d° (12)
dt I71—a dta

a

d o . .
wheredt—a denotes the Caputo’s derivative operator of oeand/; is a new parameter representing the

fractional time components in the system[32] arsl dimension is the second. In the case1lthe
expression transforms into ordinary time derivatperator

1d7 _d (13)
nedte e dt

Therefore we can easily arrive at the fractionixation equation by changing the first order detiixe in
the Eqg. (10) to a derivative of an arbitrary order:

r dx(t)
,71—17 dt a

+Xx(t)=0 O<a<1 (14)

with the solution:

X(O) =X (OF, (7 )

It is showed that this solution and this model tioe relaxation processes can be successfully adiapte
interpret experimental data on relaxation in sevaaplex disordered systems.

The second example is the simple harmonic osailldtbe harmonic oscillator, given by the well-known
second order linear differential equation with danscoefficients

2 16
dt)2(+kx:0 (16)

(15)

m

is a cornerstone of classical mechanics/{/&.can obtain the differential equation of a sinfpdetional
oscillator [25-31]bychanging the second derivative in the harmonidlasai equation to a derivative of an
arbitrary order (Eqg. (12)):

2a
M9 X k=0 0<as<i (7
n at

We can write the above equation also as

d?®'x
dt 2a

where the parameter defined by

) 2 :/72(1_”)0)2 (29)

K
+7*¢ )HX =0 (18)

k . . . L
and & =—, so we can rewrite the fractional differential eiippra of the system as
m

d?7x
dt 2a
The solution of the above equation reads:

(20)

+w’x =0
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X (t) =X (0)Ey, (- 1*7) +X (OXE , , (g 1*7) (21)
Now if we choosex (0) = 1and X (0) = Oas the initial condition, the solution becomes

X(t) = E,, (-1 ™) (22)
We can easily see that@s- 1, above equations gives

E,, (—w 1) = E,(-wt ?) = cosh/-w? ? )= coshif@t ¥ cosf (23)

As we can see from Eg. (22), the displacement effthctional oscillator is essentially describedtbg

Mittag—Leffler functionE,, (-« th”) for our considered initial conditions. It is showeg numerical

calculations that the displacement of the fracti@sgillator varies as a function of time and hdus ttime
variation depends on the parametej25].Also it is proved that, r is less than 1 the displacement shows
the behavior of a damped harmonic oscillator. Agslt, in consistent with the case of simple harimo
oscillator, the total energy of simple fractionatiblator will not be a constant. What is surprisia that the
damping of fractional oscillator is intrinsic toetlequation of motion and not introduced by addéidorces

as in the case of a damped harmonic oscillatortoUpw, the source of this intrinsic damping is clearly
understood. However, there are some attempts snréigiard. For example an interesting formulatiothef
notion of intrinsic damping force has been propasdgefs. [29, 30].

4. Classical electromagnetism: A plane wave withrhe decaying amplitude
In classical electromagnetism, behavior of eledteilds (E ), magnetic fields B ) and their relation to their

sources, charge density(r',t)) and current densityR(F,t)), is described by the following Maxwell's
equations:

AE =2 o ) (24)
E
B =0 (25)
AxE =198 (26)
c ot

=B - = 27

AxB = YH f(r )+ HE @0
c c ot

Where ¢ andu are electric permittivity and magnetic permeagiliespectively. Now, introducing the

potentials, vecto (X, ,t) and scalagd(x ,t)

B =xA (28)
E :—la_A—|j¢ (29)
c ot

and using the Lorenz gauge condition we obtainfttlewing decoupled differential equations for the
potentials

guO’A(F L) __4m

A(F 1) - M (30)
AA(F 1) S . j(rt)
ag(rt) - H OO = I e ey
C ot £
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& 1 . . o . . . .
Where—’Lzl =— . v is the velocity of the light in the medium. Furtimere, for a particle with charge g in
c° v
the presence of electric and magnetic field weveate the Lorentz force as
£ =q(E +v xE) (32)
In terms of scalar and vector potentials, Eq. 228, we may write the Lorentz force as
—q(—lg—?—D¢ +V x (0% A)) (33)

As we saw in previous section, in classical meatgnihe fractional formalism leads to relaxatior an
oscillation processes that exhibit memory and déléws fractional nonlocal formalism is also applite on
materials and media that have electromagnetic mgmaperties. So the generalized fractional Maxwell
equations can give us new models that can be unstteée complex systems. Up to now, several differe
versions of fractional electromagnetism based endifferent approaches to fractional vector calsuiave
been investigated [33-38]. However, in this paperstudy a new approach on this area [32]. Theiglea
fact, to write the ordinary differential wave edquoas in the fractional form with respectto

== _4m

DE—?p(r,t) (34)

0B =0 (35)

~ = 1 1 0°B

UOxE =-— O<a<l 36
Cnl_a ata ( )

DXB——j( H+H iﬂa O<a<l (37)

cnot?

Aqnd tbe qu. (28, 29) become (38)

B =0xA

E:—%OTA—M 0O<as<l (39)

cr? 0%
And the Lorentz force Eq. (33) becomes
F =q(-—— 22 g+ x(OxA)) 0<as<1 (40)

cntT 9%t
Then, applying the Lorentz gauge condition we obthe corresponding time fractional wave equations
the potentials

_£,u 1 0™A([t)_ dm-,.
AA(F,t) I m ?j (F,t) (41)
_ s,u 1 9™p(rt)__4m
A¢(r t) 2(1 a) Gt £ p(r 1t) (42)
If, p=0, and, j =0, we have the homogeneous fractional differentjala¢ions
_ s,u 1 0*A(t)_ 43
AA(TF t) I =0 (43)
g 1 0™t 44
e 9

We are mterested in the analysis of the electromtig fields in the medium starting from the eqoiasi
Now, we can write the fractional equations in tbkofving compact form
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0’z(x,t) _gu 1 0*z(x ,t):0
6X2 Cz ,72(1—01) ot o

wherez (x,t) represents bott(F,t) and ¢(F,t). We consider a polarized electromagnetic waven the

A, =0,A, #0A, # 0. A particular solution of this equation may beridun the form

z(x,t)=z™u(t)

wherek is the wave vector in thg direction andz,, is a constant. Substituting into Eq. (45) we abtai

(45)

(46)

2a

4 U0 +orugy =0 47
dt

Where (48)

Qf 2 =v 2k 2,72(1—0) — Qz,7 2(ka )
andQ is the fundamental frequency of the electromagnetive. The solution of this equation may be

u(t) =E,, (-Q, t*) (49)
Substituting this expression in Eq. (46) we hayauicular solution of the equation as
z(x,t)=ze™E,, (-Q, 1*) (50)

We can easily see that in the casel, the solution to the equation is
z(x,t)=Regg ™))

which defines a periodic, with fundamental period= 27€) , monochromatic wave in th&, , direction and
in time, t .This result is very well known from the ordinatg@&romagnetic waves theory.

However for the arbitrary case aof ( 0 <a <1) the solution is periodic only respect to x anid ihot
periodicwith respect to.The solution represents a plane wave with timewgieg amplitude.

(51)

1
For example for the cas® :E we have

u(t) =E,(-nQ%) =e ™" (52)
Therefore the solution is
Z(X,t)=(z ™ e ™
Then, for this case the solution is periodic omlgpect tox and it is not periodic with respectttoln fact the
solution represents a plane wave with time decagmglitude.

(53)

5. Quantum mechanics: Time fractional Schrédinger ad Pauli equation

Nowadays, application of the fractional calculugjt@ntum processes is a new and fast developirigopar
guantum physics which studies nonlocal quantum gmema. Nonlocal effects may occur in space and time
In the time domain the extension from a local tmalocal description becomes manifest as a menftagte
Therefore the underlying fundamental processes recof non-Markovian type .In the realm of non-
relativistic quantum mechanics [41, 42], Schrédingguation represents a fundamental equation ty stu
many quantum processes
2 2

PO v xyw=indY 4)

2m ox° ot

Recently the time fractional Schrédinger equatishjch has a Caputo fractional time derivative, was
considered by Naber [46], in order to describe M@amkovian evolution in quantum mechanics. The gainer
idea to obtain the time fractional Schrédinger ¢iguas to keep the position and momentum operaitotise
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ﬂ

usual form and replacin'gﬁ% - (inh,);D/ ori h% ~ (i%n,)sD , where;D denotes the Caputo’s

derivative operator of orde¥ and#, =M ,c°T,%is a scaled Planck constant. Also the paramdikgs
andT, are Planck mass and Planck time, respectivelydefired as

Gh _en (55)

where G and c are the gravitational constant aedpleed of light in vacuum, respectively.

Naber gives some arguments in favour of the lat@se and many authors follow hitherein[47,

48].However one can consider the former one assailgle case for studying time fractional Schrédinge

equation. For instance the wave function and tledadility density for a free particle within thigpe of

time fractional Schrddinger equation

3 h 0Py
2m ox°

have been studied in Ref. [49].

As we mentioned above, one can introduce the traeidnal Schrédinger equation to describe non-

Markovian evolution in guantum realm. Now we gelizeathe time fractional Schrédinger equation E)(

and obtain the following time fractional Pauli etjaa [50],

DY O<a<1 (56)

[%(ﬁ—gA)2+e¢+,uB&B]li:(iha)th"W O<a<l (57)

One can use this equation to discuss the electpon mrecession problem in a homogeneous constant
magnetic field [50]. Here we assume that, the sdacis fixed at a certain location and its splmhe only

degree of freedom. Also, let the magnetic fieldsisinof a constant fiel® in the Z direction (i. B = B, K
) .Therefore, that part of the time fractional Paguation Eq. (57), which contains the spin yields

(I ha)((:) Dta/\/ = haa{]é—z/\/ (58)
$ ~ . . -
Whereq) = —2— are the so-called Larmor frequency amds the well-known Pauli matrices for a spin
mc

— particles .Science the Hamiltonian of our systean 2 2 matrix, the spin function in arbitrary time (t)

must be written as a column matrix of two composemtd can be derived as below,

_ (a0 _ [+ttt ”
Ll 110 el P

Where y and d are arbitrary phase constants.

Now, by use of Eqg. (59) we able to calculate thabpbility for spin-up,P_, and spin-down P_ , at
t>0:
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P, =R =co¢ €)E, i @t Y E, € @t F) (0

P, =) =sin* O)IE, (i (@t ), ( @ty 1

We can explicitly see that as— 1, above equations givey., =P _ +P _ =1.
But for the arbitrary case af (0<a <1), we have

P, =P, +P, =cos, (@t J )+ sif (@1t ¥ )

Where is obtained in terms of the sine and cosiiteaitLeffler functions Eq. (7). It is clearly seémat the
total probability of upness and downness of ele$repin varies as a function of time and als@fiesthds on
the parameter .

(62)

6. Summary and discussion

Fractional calculus is a very useful tool in ddsicg the evolution of systems with memory, whichitally

are dissipative and to complex systems. In recenades it has attracted interest of researchesviral
areas of science. Specially, in the field of physipplications of fractional calculus have gainexdsiderable
popularity [3, 4] (and the references therein)pitesof these various applications, there are sonp®rtant
challenges. For example physical interpretatiortierfractional derivative is not completely claxif yet.

In this review, we present some fundamental clabsind quantum phenomena in the framework of time
fractional formalism in order to provide a deepaderstanding of the physical interpretations o€ticmal
derivative. We have seen that, a simple fractiosalllator behaves like a damped harmonic oscilladhat

is surprising is that the damping is intrinsic he equation of motion and not introduced by addéidorces

as in the case of a damped harmonic oscillatoio Ala the case of fractional electromagnetism ae that
behavior of electromagnetic waves is not same asstandard ones. In fact we see that the fractional
Maxwell's equations lead to the plan wave with tidezaying amplitude (Eqg. (50, 53)).It is showed tha
amplitude of this plane wave varies as a functibtinee and this time variation depends explicitly the
parametetr (the order of the fractional derivative). Finallye see that total probability of upness and
downness of electron's spin Eq. (62) is not equainity and it depends dnand the parametar, as well.
The interpretation of this time dependent probgbif an open area of research. It is worth nagichat an
expansion method has been proposed [28, 30] tostisthe dynamics in the media where the ordereof th
fractional derivative is close to an integer numberwill be of interest to consider above mentidne
phenomena within this scheme. We hope to repothese issues in the future.
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