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Abstract

In TGD, geometric and number theoretic visions of physics are complementary. This complemen-
tarity is analogous to momentum position duality of quantum theory and implied by the replacement
of a point-like particle with 3-surface, whose Bohr orbit defines space-time surface. At a very abstract
level this view is analogous to Langlands correspondence. The recent view of TGD involving an exact
algebraic solution of field equations based on holography= holomorphy vision allows to formulate the
analog Langlands correspondence in 4-D context rather precisely. This requires a generalization of
the notion of Galois group from 2-D situation to 4-D situation: there are 2 generalizations and both
are required.

1. The first generalization realizes Galois group elements, not as automorphisms of a number field,
but as analytic flows in H = M4 × CP2 permuting different regions of the space-time surface
identified as roots for a pair f = (f1, f2) of pairs f = (f1, f2) : H → C2, i = 1, 2. The functions
fi are analytic functions of one hypercomplex and 3 complex coordinates of H.

2. Second realization is for the spectrum generating algebra defined by the functional compositions
g ◦ f , where g : C2 → C2 is analytic function of 2 complex variables. The interpretation is as
a cognitive hierarchy of function of functions of .... and the pairs (f1, f2) which do not allow
a composition of form f = g ◦ h correspond to elementary function and to the lowest levels of
this hierarchy, kind of elementary particles of cognition. Also the pairs g can be expressed as
composites of elementary functions.

If g1 and g2 are polynomials with coefficients in field E identified as an extension of rationals,
one can assign to g ◦ f root a set of pairs (r1, r2) as roots f1, f2) = (r1, r2) and ri are algebraic
numbers defining disjoint space-time surfaces. One can assign to the set of root pairs the analog
of the Galois group as automorphisms of the algebraic extension of the field E appearing as the
coefficient field of (f1, f2) and (g1, g2). This hierarchy leads to the idea that physics could be
seen as an analog of a formal system appearing in Gödel’s theorems and that the hierarchy of
functional composites could correspond to a hierarchy of meta levels in mathematical cognition.

3. The quantum generalization of integers, rationals and algebraic numbers to their functional
counterparts is possible for maps g : C2 → C2. The counterpart of the ordinary product is
functional composition ◦ for maps g. Degree is multiplicative in ◦. In sum, call it +e, the degree
should be additive, which leads to the identification of the sum +e as an element-wise product.
The neutral element 1◦ of ◦ is 1◦ = Id and the neutral element 0e of +e is the ordinary unit
0e = 1.

The inverses correspond to g−1 for ◦, which in general is a many-valued algebraic function and
to 1/g for times. The maps g, which do not allow decomposition g = h ◦ i, can be identified as
functional primes and have prime degree. f : H → C2 is prime if it does not allow composition
f = g ◦ h. Functional integers are products of functional primes.

The non-commutativity of ◦ could be seen as a problem. The fact that the maps g act like opera-
tors suggest that the functional primes gp in the product commute. Functional integers/rationals
can be mapped to ordinary by a morphism mapping their degree to integer/rational.

4. One can define functional polynomials P (X), quantum polynomials, using these operations. In
P (X), the terms pn ◦Xn, pn and X should commute. The sum

∑
e pnX

n corresponds to +e.
The zeros of functional polynomials satisfy the condition P (X) = 0e = 1 and give as solutions
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roots Xk as functional algebraic numbers. The fundamental theorem of algebra generalizes at
least formally if Xk and X commute. The roots have representation as a space-time surface.
One can also define functional discriminant D as the ◦ product of root differences Xk −e Xl,
with −e identified as element-wise division and the functional primes dividing it have space-time
surface as a representation.

5. The iteration of functional rimes gp defines analogs for the powers of p-adic primes and one can
define a functional generalization of p-adic numbers as quantum p-adics. The coefficients of gkp
are now polynomials with degree smaller than p. The generalization of

Witt polynomials as a representation of p-adic numbers relies on the same arithmetics as the
definition of integers and makes it possible to realize the functional p-adic numbers as space-time
surfaces. The space-time surfaces as roots of Witt polynomials are characterized by ramified
primes. The iterates of prime polynomials gp might allow us to understand the p-adic length
scale hypothesis. Large powers of prime appearing in p-adic numbers must approach 0e with
respect to the p-adic norm so that gnp must effectively approach Id with respect to ◦. Intuitively,
a large n in gnP corresponds to a long p-adic length scale. For large n, gnp cannot be realized
as a space-time surface in a fixed CD. This would prevent their representation and they would
correspond to 0e and Id. During the sequence of SSFRs the size of CD increases and for some
critical SSFRs a new power can emerge to the quantum p-adic.

There are many open questions.

1. The question whether the hierarchy of infinite primes has relevance to TGD has remained open.
It turns out that the 4 lowest levels of the hierarchy can be assigned to the rational functions
fi : H → C2, i = 1, 2 and the generalization of the hierarchy can be assigned to the composition
hierarchy of prime maps gp.

2. Could the transitions f → g◦f correspond to the classical non-determinism in which one root of
g is selected? If so, the p-adic non-determinism would correspond to classical non-determinism.
Quantum superposition of the roots would make it possible to realize the quantum notion of
concept.

3. What is the interpretation of the maps g−1 which in general are many-valued algebraic functions
if g is rational function? g increases the complexity but g−1 preserves or even reduces it so that
its action is entropic. Could selection between g and g−1 relate to a conscious choice between
good and evil?

4. Could one understand the p-adic length scale hypothesis in terms of functional primes. The
counter for functional Mersenne prime would be gn2 /g1, where division is with respect to ele-
mentwise product defining +e? For g2 and g3 and also their iterates the roots allow analytic
expression. Could primes near powers of g2 and g3 be cognitively very special?

1 Introduction

The Quanta Magazine article (see this) related to Langlands correspondence and involving concepts
like elliptic curves, modular functions, and Galois groups served as an inspiration for these comments.
Andrew Wiles in his proof of Fermat’s Last Theorem used a relationship between elliptic curves and
modular forms. Wiles proved that certain kinds of elliptic curves are modular in the sense that they
correspond to a unique modular form. Later it was proved that this is true for all elliptic surfaces. Later
the result was generalized to real quadratic extensions of rationals by 3 mathematicians involving Samir
Siksek and now by Caraiani and Newton for the imaginary quadratic extensions.

Could this correspondence be proved for all algebraic extensions of rationals? And what about higher
order polynomials of two variables? Complex elliptic curves, defined as roots of third order polynomials of
two complex variables, are defined in 2-D space with two complex dimensions have the special feature that
they allow a 2-D discrete translations as symmetries: in other words, they are periodic for a suitable chosen
complex coordinate. I have talked about this from TGD point of view in [33]. Is the 1-1 correspondence
with modular forms possible only for elliptic curves having these symmetries?
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How are the Galois groups related to this? Indian mathematical genius Ramanujan realized that
modular forms seem to be associated with so-called Galois representations. The Galois group would be
the so- called absolute Galois group of the number field involved with the representation. Very roughly,
they could be seen as representations of a Lie group which extends the Galois group. Also elliptic curves
are associated with Galois representations. This suggests that the Galois representations connect elliptic
curves, objects of algebraic geometry and modular forms, which correspond to group representations.
These observations led to Langlands program which roughly states a correspondence between geometry
and number theory.

The Galois group is indeed involved with Langlands duality. If the Lie group G is defined over field
k (in the recent case extension of rationals), the Langlands dual LG of G is an extension of the absolute
Galois group of k by a complex Lie group (see this. The representation of the absolute Galois group is
finite-dimensional, which suggests that it reduces to a Galois group for a finite-dimensional extension of
rationals. Therefore the effective Galois group used can be larger than the Galois group of extension of
rationals. LG has the same Lie algebra as G.

In the following, I will consider the situation from a highly speculative view point provided by TGD.
In TGD, geometric and number theoretic visions of physics are complementary: M8−H duality in which
M8 is analogous to 8-D momentum space associated with 8-D H = M4 × CP2 is a formulation for this
duality and makes Galois groups and their generalizations dynamic symmetries in the TGD framework
[30]. This complementarity is analogous to momentum position duality of quantum theory and implied
by the replacement of a point-like particle with 3-surface, whose Bohr orbit defines space-time surface.

At a very abstract level this view is analogous to Langlands correspondence [31]. The recent view of
TGD involving an exact algebraic solution of field equations based on holography= holomorphy vision
allows to formulate the analog Langlands correspondence in 4-D context rather precisely. This requires a
generalization of the notion of Galois group from 2-D situation to 4-D situation: there are 2 generalizations
and both are required.

1. The first generalization realizes Galois group elements, not as automorphisms of a number field, but
as analytic flows in H = M4 ×CP2 permuting different regions of the space-time surface identified
as roots for a pair f = (f1, f2) of pairs f = (f1, f2) : H → C2, i = 1, 2. The functions fi are analytic
functions of one hypercomplex and 3 complex coordinates of H.

2. Second realization is for the spectrum generating algebra defined by the functional compositions
g ◦ f , where g : C2 → C2 is analytic function of 2 complex variables. The interpretation is as
a cognitive hierarchy of function of functions of .... and the pairs (f1, f2) which do not allow a
composition of form f = g ◦ h correspond to elementary function and to the lowest levels of this
hierarchy, kind of elementary particles of cognition. Also the pairs g can be expressed as composites
of elementary functions.

If g1 and g2 are polynomials with coefficients in field E identified as an extension of rationals, one
can assign to g ◦ f root a set of pairs (r1, r2) as roots f1, f2) = (r1, r2) and ri are algebraic numbers
defining disjoint space-time surfaces. One can assign to the set of root pairs the analog of the Galois
group as automorphisms of the algebraic extension of the field E appearing as the coefficient field
of (f1, f2) and (g1, g2). This hierarchy leads to the idea that physics could be seen as an analog of a
formal system appearing in Gödel’s theorems and that the hierarchy of functional composites could
correspond to a hierarchy of meta levels in mathematical cognition [32].

Do the notions of integers, rationals and algebraic numbers generalize so that one could speak of their
functional or quantum counterparts?

1. For maps g : C2 → C2, the counterpart of the ordinary product is functional composition ◦ .
Degree is multiplicative in ◦. In sum, call it +e, the degree should be additive, which leads to the
identification of the sum

∑
e as an elementwise product ×e. One can identify neutral element 1◦ of

◦ as 1◦ = Id and the neutral element 0e of +e as ordinary unit 0e = 1.
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The inverses correspond to g−1 for ◦, which is a many-valued algebraic function and to 1/g for
times. The maps g, which do not allow decomposition g = h ◦ i, can be identified as functional
primes and have prime degree. This notion of primeness applies also to f . One can construct
integers as products of functional primes.

The non-commutativity of ◦ could be seen as a problem. The fact that the maps g act like operators
suggest that for the quantum versions of functional primes gp the primes in the product commute.
Functional integers/rationals can be mapped to integers by a morphism mapping their degree to
integer/rational.

2. One can also define functional polynomials P (X), quantum polynomials, using these operations. In
the terms pn ◦Xn pn and g should commute and the sum

∑
e pnX

n corresponds to +e. The zeros
of functional polynomials satisfy the condition P (X) = 0e = 1 and give as solutions roots Xk as
functional algebraic numbers. The fundamental theorem of algebra generalizes at least formally if
Xk and X commute. The roots have representations as space-time surfaces. One can also define
functional discriminant D as the ◦ product of root differences Xk −e Xl, with −e identified as
element-wise division.

What about functional p-adics?

1. The functional powers g◦kp of primes gp define analogs of powers of p-adic primes and one can define

a functional generalization of p-adic numbers as quantum p-adics. The coefficients Xk Xk ◦ gkp are
polynomials with degree smaller than p. The sum +e so that the roots are disjoint unions of the
roots of Xk ◦ gkp .

2. Large powers of prime appearing in p-adic numbers must approach 0e with respect to the p-adic
norm so that gnP must effectively approach Id with respect to ◦. Intuitively, a large n in gnP
corresponds to a long p-adic length scale. For large n, gnP cannot be realized as a space-time surface
in a fixed CD. This would prevent their representation and they would correspond to 0e and Id.
During the sequence of SSFRs the size of CD increases and for some critical SSFRs a new power
can emerge to the quantum p-adic.

3. Universal Witt polynomials Wn define an alternative representation of p-adic numbers reducing the
multiplication of p-adic numbers to elementwise product for the coefficients of the Witt polynomial.
The roots for the coefficients of Wn define space-time surfaces: they should be the same as those
defined by the coefficients of functional p-adics.

There are many open questions.

1. The question whether the hierarchy of infinite primes has relevance to TGD has remained open.
It turns out that the 4 lowest levels of the hierarchy can be assigned to the rational functions
fi : H → C2, i = 1, 2 and the generalization of the hierarchy can be assigned to the composition
hierarchy of prime maps gp.

2. Could the transitions f → g ◦ f correspond to the classical non-determinism in which one root
of g is selected? If so, the p-adic non-determinism would correspond to classical non-determinism.
Quantum superposition of the roots would make it possible to realize the quantum notion of concept.

3. What is the interpretation of the maps g−1 which in general are many-valued algebraic functions
if g is rational function? g increases the complexity but g−1 preserves or even reduces it so that
its action is entropic. Could selection between g and g−1 relate to a conscious choice between good
and evil?
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4. Could one understand the p-adic length scale hypothesis in terms of functional primes. The counter
for functional Mersenne prime would be gn2 /g1, where division is with respect to elementwise product
defining +e? For g2 and g3 and also their iterates the roots allow analytic expression. Could primes
near powers of g2 and g3 be cognitively very special?

2 Two Galois groups

In TGD it is possible to define two generalizations of the Galois group: I call them internal and external
Galois groups. Both notions of the Galois group are needed.

2.1 Internal Galois group

The 4-D Galois group, the internal Galois group, is assumed to permute the regions of a single connected
component of the space-time surface realized as roots of the pair (f1, f2) defining the space-time surface.
The internal Galois group would act as analytic flows of H transforming the regions as roots to ech other
so that the action is analogous to that of a braid group.

1. It is easy to see that the space-time surface in general consists of several disjoint regions if (f1, f2)
is expressible as the composite (f1, f2) = (g1(h1, h2), g2(h1, h2)). In this case the space-time surface
is union of disjoint surfaces hi = ri, where ri correspond to the roots of gi. The permutations of the
roots for a connected component of the space-time surface would realized as analogs of braidings.

2. The space-time regions identified as roots of (f1, f2) for a single connected component would have
string world sheets as interfaces having hypercomplex time coordinates u, v. Suppose that there are
n string world sheets. The number of string world sheets/folds can be larger than n. If folds are
between any pair i, j are present then the number of folds cannot be larger than (n − 1)n: in this
case all pairs i, j would have two folds. Circle is a simple example: it has 2 sheets and 2-folds: 1,2
and 2,1.

Since the M4 complex coordinates w and roots as its values labelling the string world sheets are in
general complex, one can say that the fold is complexified. For a cusp (see this) the two folds can
be ordered. Fold would now involve a string world sheet and cusp would combine two folds. At the
vertex of the cusp where 3 roots co-incide, two folds would disappear. This suggests that the string
world sheets connect at their ends associated with the disappearing folds and form a single string
world sheet.

3. Catastrophe theory suggests that all catastrophes and hence also the space-time surfaces can be
constructed from complexified cusps. The folds, which appear on a cloth, can be ordered. If so,
folds between roots i, i + 1 and i − 1, i are possible and would come from a single cusp but folds
with |i − j ≥ 1 would not be possible. This could give rise to the ordering of the roots wi. Does
this mean that the Galois group is cyclic?

4. This brings in mind twistor amplitudes and planar diagrams, which correspond to Feynman dia-
grams with no crossing lines and therefore embeddable in plane. Non-planar Feynman diagrams
are a problem of the twistor Grasmannian approach [3, 2] since they have no twistorial representa-
tion. The Feynman diagrams with crossing lines can be embedded in the plane with holes, whose
boundaries are connected by cylinders as kinds of wormholes. In string models, the corresponding
diagrams involve this kind of wormholes. This suggests that if the 2-D projection of the space-time
sheets with constant values of hypercomplex coordinates has a topology with a genus g larger than
0, the space-time surface contains wormholes connecting roots with |i− j ≥ 1. In this case also the
generalized Galois group is non-Abelian. Wormhole contacts defining Euclidean regions (CP2 type
extremals) could be such connections.
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To include wormhole contacts as connectors of the Minkowskian space-time sheets, one should allow
besides the Minkowskian folds also the presence of the Euclidean CP2 type extremals with a light-
like M4 curve, possibly geodesic, as M4 projection. For these Euclidean regions the string world
sheet would reduce to this curve since the second hypercomplex coordinate would be constant.

The internal Galois group could relate to the TGD view of topological qubits [34].

1. The quantum-mechanical transfer of fermions between regions corresponding to roots of (f1, f2)
does not require a continuous path. Classical transfer requires a path going through a fold at which
the two roots as space-time regions meet. Fold corresponds to a boundary of a string world sheet
identified as fermion line. Folds are labelled by the values of the complex coordinate w having
interpretation as roots.

2. There is a direct analogy to the case of condensed matter majorana fermions suggested to define
topological qubits. For a Majorana fermion two branches of the Fermi surface touch each other
at point and the energy difference for the branches is zero at this point. Majorana fermions are
assigned with these points and they would be located at the ends of a wire [34]. In the TGD
framework the folds would correspond to the seats of topological qubits.

2.2 Outer Galois group

The element-wise multiplication of the function for pairs (f1, f2) is essential for the identification of the
outer Galois group and gives an algebra, which is enough for identifying the Galois group as group of
automorphisms for the algebraic extension of rationals involved. Outer Galois group permutes the roots
of g, which are algebraic numbers in the extension of E and label the disjoint components of the spacetime
surfaces. These two Galois groups commute and the outer Galois group relates to the internal Galois
group in the same way as the Galois group of an extension of rationals to the Galois group of complex
rations generated by complex conjugation.

The outer Galois group is natural for the TGD realization of the Langlands duality, discussed from
the TGD point of view in [31].

1. A simpler version of the outer Galois group is associated with dynamical complex analytic symme-
tries g : C → C: (f1, f2) → (g1 ◦ f1, f2). Here g1 does not have a parametric dependence on f2.
The outer Galois group relates to each other disjoint space-time surfaces. When g reduces to map
g : C → C, one can assign to it an ordinary Galois group relating to each other the disjoint roots
of g ◦ f realized as disjoint 4-surfaces (f1, f2) = (r1, 0).

2. The notion of outer Galois group generalizes to the general situation g = (g1, g2). Also now the
roots of g ◦ f are disjoint space-time surfaces representing roots as pairs of algebraic numbers
(f1, f2) = (ri,1, ri,2). Is it possible to assign to the roots the analog of the Galois group?

This group should act as a group of automorphisms of some algebraic structure. This structure
cannot be a field but algebra structure is enough. These arithmetic operations would be component-
wise sum (a, b) + (c+ d) = (a+ c, b+ d) and componentwise multiplication (a, b) ∗ (c, d) = (ac, bd).
The basic algebra would correspond to the points of (x, y) ∈ E2 or rationals and the extension
would be generated by the pairs (f1, f2) = (ri,1, ri,2). This structure has an automorphism group
and would serve as a Galois group. The dimension of the extension of E2 could define the value of
the effective Planck constant.

Also the notion of discriminant can be generalized to a pair (D1, D2) of discriminants using the
component-wise product for the differences of root pairs. Could Di be decomposed to a product of
powers of algebraic primes of the extension of E2?
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3. In [31] the idea that the space-time surfaces can be regarded as numbers was discussed. For a
given g, one can indeed construct polynomials having any for algebraic numbers in the extension
F of E defined by g. g itself can be represented in terms of its n roots ri = (ri,1, ri,2), i = 1, n
represented as space-time surfaces as a product

∏
i(f1 − ri,1, f2 − ri,2) of pairs of monomials. One

can generalize this construction by replacing the pairs (ri,1, ri,2) with any pair of algebraic numbers
in F . Therefore all algebraic numbers in F can be represented as space-time surfaces. Also the sets
formed by numbers in F can be represented as unions of the corresponding space-time surfaces.

3 Symmetries and dynamical symmetries

3.1 Maps g : C2 → C2 as dynamical symmetries

3.1.1 The action of g : C2 → C2 on f : H → C2

It is good to look first at the action of g on f in more detail.

1. In the simplest situation fi and gi are polynomials with coefficients in E. The functional composition
f → g ◦ f increases algebraic complexity if the degree of g is higher than 1. The interpretation
would be as a spectrum generating or dynamical symmetry.

If g = (a, b; c, d), ad−bc = 1 as an element of SL(2, C) acts on (f1, f2) linearly, the degree g is 1 and
the complexity does not increase. The conditions (f1, f2) = (0, 0) imply (af1+bf2, cf1+df2) = (0, 0)
so that the original space-time surface f1, f2) = (0, 0) is a solution. The interpretation would
be as a gauge symmetry. However, also the space-time surfaces (af1 + bf2, cf1 + df2) = (0, 0)
with (fi, fj) 6= (0, 0) could be considered and one would obtain an entire SL(2, C) orbit. The
interpretation would be as a dynamical symmetry.

2. fi and gi could also be rational functions but this is not necessary. Since the roots of fi correspond
to the roots of the polynomial P defining the numerator of R = P/Q, Q does not affect the roots
as space-time surfaces. If one requires that inversion acts as SL(2, C) symmetry for fi, Q must be
polynomial so that it can have zeros. Inversion would map the sectors Pi = 0 and Qi = 0 to each
other.

3.1.2 Separation of the dynamics of f and g and a proposal for a number theoretic formula
for the exponent of classical action

Interestingly, the dynamics associated with g and f separate in a well-defined sense. The roots of g◦f = 0
are roots of g independently of f . This has an analogy in computer science. f is analogous to the
substrate and g to the program. The assignment of correlates of cognition to the hierarchies of functional
compositions of g is analogous to this principle but does not mean that conscious experience is substrate
independent.

This suggests that the exponential of the classical action exponential is expressible as a product of
action exponentials associated with f and g degrees of freedom. The proposal that the classical action
exponential corresponds to a power of discriminant as the product of ramified primes for a suitably
identified polynomial carries the essential information about polynomials and is therefore very attractive
and could be kept. The action exponentials would in turn be expressible as suitable powers of discriminants
defined by the roots of f = (f1, f2) resp. g = (g1, g2): D(f, g) = D(f)D(g).

Here it is essential to restrict to functional primes fP = (f1, f2) and consider the composites g ◦ f : in
this case one can hope that it is discriminant in terms of roots of g. The roots fP = (r1, r2) of g(fP ) = 0
depend on g only and are expected to define a discriminant carrying the relevant information about g.

How to define the discriminants D(g ◦ fP )?
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1. The starting point formula is the definition of D for the case of an ordinary polynomial of a single
variable as a product of root differences D =

∏
i 6=j(ri − rj). How to generalize this? Restrict the

consideration to the case fP = (f1, f2). Now roots of are replaced with roots (fP,1 = r1,i|r2,j , fP,2 =
r2,j) of g. Here r1,i|r2,j are the roots of g as values of g ◦ f1, when the root r2,j of g ◦ f2 is fixed.
For a fixed r2,j , one can define discriminant D1|r2,j using the usual product formula. The formula
should be consistent with the strong correlation between the roots: the product of discriminants for
f1 and f2 does not manifestly satisfy this condition. The discriminant should also vanish when two
roots for f1 or f2 coincide.

2. The first guess for the discriminant for g ◦ f is as the product D1|2 =
∏

j 6=k(r2,jD1|r2,j − r2,kD1|r2,k .
This formula is quadrilinear in the roots and has the required antisymmetries under the exchange of
f1 and f2. The product differences of r2,i−r2, j do not appear explicitly in the expression. However,
this expression vanishes when two roots of f2 coincide, which is consistent with the symmetry under
the exchange of f1 and f2. If this is not the case, the symmetry could be achieved by defining the
discriminant as the product D1,2 ≡ D1|2D2|1.

The action exponential should also carry information about the internal properties of the roots f =
(r1,j , r2,j).

1. The assignment of action exponential, perhaps as a discriminant-like quantity, to each root f =
(r1,j , r2,j) is non-trivial since the roots are now algebraic functions representing space-time regions
the regions analogous to those associated with cusp catastrophe. The probably too naive guess is
that the contribution to the action exponential is just 1: it would mean that this contribution to
the action vanishes.

2. An alternative approach would require an identification of some special points in these regions of
a natural coordinate as the dependent variable, say the hypercompex coordinate, as analog to the
behavior variable of cusp. The problem is that this option is not a general coordinate invariant.

3. It would be nice if the proposed picture would generalize. The physical picture suggests that there
is a dimensional hierarchy of surfaces with dimensions 4, 2, 0. The introduction of f3 would allow
us to identify 2-D string world sheets as roots of (f1, f2, f3). The introduction of f4 would make
it possible to identify points of string world sheets as roots of (f1, f2, f3, f4) having interpretation
as fermionic vertices. One could assign to these sets of these 2-surfaces and points discriminants
in the way already described. The action exponential would involve the product of all these 3
discriminants. This would correspond to the assignment of action exponentials to these surfaces
and also this would conform with the physical picture.

4. Locally, the analogs for the maps g for f3 would be analytic general coordinate transformations
mapping space-time surfaces to themselves locally.

(a) If they are 1-1, they give rise to a generalization of conformal invariance. If they are many-to-
one or vice versa, they have a physical effect. The roots of g would be 2-surfaces. 2-D analogs
of functional p-adics, of quantum criticality, etc... that I have assigned to elementary particles
would be well defined notions and this would mean a justification of the physical picture behind
the p-adic mass calculations involving string world sheets and partonic 2-surfaces.

(b) The conformal algebras in TGD have non-negative conformal weights and have an infinite frac-
tal hierarchy of half -Lie algebras isomorphic to the entire algebra [28]. These algebras contain
a finite-dimensional subalgebra transformed from a gauge algebra to a dynamical symmetry
algebra. The interpretation in terms of the many-to-1 property of polynomial transformations
g is natural. The action of symmetries on the pre-image of 2-surfaces as roots of g would affect
all images simultaneously and would therefore be poly-local. Could the origin of the speculated
Yangian symmetry [23] be here? Could this relate to the gravitational resp. electric Planck
constants which depend on the masses resp. charges of the interacting pair of systems.
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3.1.3 Prime polynomials gp : C2 → C2 and complexity hierarchy

The polynomials (P1, P2) and also the rational functions (g1 = P1/Q1, g2 = P2/Q2) form a well-defined
complexity hierarchy.

1. In the general case, the space-time surfaces (f1, f2) = (0, 0): H → C2 can have several disjoint
components. It is also possible to have quantum superposition of these surfaces and also many-
particle states consisting of a subset of the root. There are several disjoint components, when (f1, f2)
is a composite function of form f = g ◦ f . In other words, one has (f1, f2) = (g1(h1, h2), g2(h1, h2)).
The space-time surfaces correspond to roots hi = ri, which are disjoint.

2. SL(2, C) transformations however act linearly in C2 and the original space-time surface (f1, f2) =
(0, 0) solves the conditions. Note that also the surfaces (af1 + bf2, cf1 +df2) = (0, 0) with (f1, f2) 6=
(0, 0) define solutions. Their action is therefore equivalent with the action of a multiplicative unit.
Hence SL(2, C) acts either as a gauge symmetry or as a dynamical symmetry.

3. To avoid disjoint union of space-time surfaces (f1, f2) must be a prime polynomial in the sense that
it does not allow the functional composition f = g ◦ h with g having degree higher than 1. For
the polynomials of a single variable, this is the case if the degree of the polynomial is prime but
this is not a necessary condition for primeness. As already found, this condition generalizes to the
polynomials of 3 complex variables considered in the recent case.

Space-time surfaces of these kinds are natural candidates for fundamental objects and the polynomial
in question would have prime degree with respect to each of the 3 complex coordinates of H:
this would make 3, presumably small primes. The composites formed of maps g and of these
fundamental function pairs f would define cognitive representations of the surface defined by f
as kind of statements about statements. An interesting question is whether these surfaces could
correspond to elementary particles.

Consider first the primality for pairs (g1, g2).

1. For the polynomials of a single variable, this is the case if the degree of the polynomial is prime
but this is not a necessary condition for primeness. In the recent case this means that by a
suitable choices of gauge using SL(2, C) transformation one could choose that for prime pairs
(g1(f1, f2), g2(f1, f2)) g1 has highest power of f1 equal to prime. Single prime labels the prime
polymial pair (g1, g2).

2. There is also a natural measure of complexity as the number of maps g, which correspond to prime
polynomial pairs (g1 = P1, g2 = P2) appearing in the functional composite with a pair of prime
polynomials (f1, f2). Here the prime polynomials Pi must have degree higher than 1 in order to
increase the complexity and affect the space-time surface at all.

What about primality in the case of (f1, f2) : H → C2, which are polynomials of 3 complex coordinates
of H. The situation reduces to that for f1 by the above argument but does this mean that for prime
polynomial pairs (f1, f2), fi are characterized by 3 prime degrees?

1. In this case one would have reducible polynomials f1 = ξp1

1 ξ
p2

2 w
p3 as prime polynomials. The

conditions (f1, f2) = 0 would define 3 disjoint 4-surfaces which might have common points. This
situation is prevented if the the polynomials are required to be irreducible but one would have
polynomials ξp1

1 , ξp2

2 , and wp3 as polynomial primes for f1 and f2. The problem is that these
polynomials involve only a single power and their roots are zero irrespective of the value of pi so
that all these powers would correspond to the same space-time surface. One can say that all roots
for these powers are degenerate and equal to zero. The physical interpretation would be in terms
of maximal criticality.
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2. The coefficients of powers of p for p-adic numbers can be regarded as numbers in a finite field Fp.
Now the numbers of Fp would correspond to polynomials P (z) of degree lower than p. Could the
analogs of the number of Fp correspond to the sums of the products of powers of w resp. ξ1 resp. ξ2
with maximal exponents smaller p1 resp. p2 resp. p3. If this picture is correct, the counterparts of
prime powers would be ξn1p1

1 ξn2p2

2 wn3p3 . As if one had 3 p-adicities simultaneously. If irreducibility
is required only ξn1p1

1 , ξn2p2

2 , wn3p3 are possible.

For the functional analogs of p-adic numbers as sums of polynomials of ξ1, ξ2, and w expanded
with respect to powers of powers of ξn1p1

1 , ξn2p2

2 and wn3p3 with coefficients as polynomials of single
variable of lower degree, this problem is not encountered.

3. Space-time surfaces corresponding to prime pairs (f1, f2) are candidates for fundamental objects
and the polynomial in question would have prime degree with respect to each of the 3 complex
coordinates of H: this would make 3, presumably small primes. The composites formed of maps
g and of these fundamental function pairs f would define cognitive representations of the surface
defined by f as kind of statements about statements. An interesting question is whether these
surfaces could correspond to elementary particles.

A highly interesting observation is that the numbers allowing expansions in powers of an integer n
having powers of primes belonging to some set can be regarded as p-adic integers for all these primes.
One might say that these numbers belong to an intersection of these number fields. This could allow
gluing of p-adic factors of adeles to single continuous structure. This suggests the possibility of multi-p
p-adicity. The discriminant D of a polynomial defined as root differences can be expressed as a product
of powers of so called ramified primes and the question is which of them is physically selected and why.
Could multi-p p-adicity prevail that the expansions of physical quantities are in powers of D. I have also
proposed that D, or its suitable power, is the number theoretical counterpart for the exponent of Kähler
function as vacuum functional.

3.2 About the identification of the Lie groups appearing in Langlands dual-
ity?

Transformations (g1, g2) acting as symmetries should not increase the complexity and therefore should
preserve the degree of the numerator or perhaps decrease it. Several alternatives can be considered.

Transformations (g1, g2) acting as symmetries should not increase the complexity and therefore should
preserve the degree of the numerator or perhaps decrease it. Several alternatives can be considered.

1. If it is required that the polynomials fi remain polynomials, then SL(2, C) that acts on (f1, f2) like
in spinors is a natural alternative. A possible interpretation is as a Lorentz group or alternatively
as a group SL(2, C) assignable to the Virasoro algebra.

2. The allowance of rational transformations g and also rational functions fi would conform with the
notion of modular group representations. If they are are allowed and if one requires that there is no
mixing of f1 and f2 as mildly suggested by the element-wise product for (f1, f2), the group reduces
to SL(2, C) × SL(2, C). SL(2, C) consists of Möbius transformations z → (az + b)/(cz + d) (see
this). For polynomials f1, this gives new solutions except in the case of inversion f1 → 1/f1. In this
case one does not obtain a new solution unless one assumes that f1 is a rational function f1 = P/Q
such that Q has zeros.

SL(2, C) has a rich spectrum of subgroups and the modular representations are invariant under
some discrete subgroup of SL(2, C). The modular group corresponds to SL(2, Z) which has various
discrete subgroups leaving modular forms invariant. There is an entire hierarchy of subgroups
associated with the algebraic extensions of Z and in this case the matrix elements would be algebraic
integers. Now the integers for subgroup SL(2, Z) would be replaced with the algebraic integers for
E appearing as the coefficients of fi and gi.
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3. If one allows the mixing of fi, Möbius group is replaced with group SL(3, C). What is interesting
is that SL(3, C) contains SU(3) as a subgroup acting as isometries of CP2. A second interesting
observation is that also SL(3, C) allows McKay correspondence in which the finite subgroups of
SU(2) are replaced by finite subgroups of SU(3) [24]. This is highly desirable in the TGD framework
since SU(3) acts as isometries of CP2. An interesting question is whether the McKay correspondence
holds true for SL(n,C), n > 3.

Where should the Lie group for the analogs of Möbius transformations act? It is not natural to require
that a discrete subgroup would leave the space-time surface invariant. The most natural option is that
the action takes place in the ”world of classical worlds” (WCW) formed by the generalized Bohr orbits
satisfying holography= holomorphy principle. The counterparts of modular forms could correspond to
WCW spinor fields invariant under the appropriate discrete subgroup of the generalized Möbius group.

3.3 Physical interpretation of the generalized modular group and spectrum
generating group

One can consider several physical interpretations for the generalized modular group and dynamical spec-
trum generating algebra formed by the maps g : C2 → C2.

1. Is the interpretation of SL(2, C) as a Lorentz group reasonable? The McKay correspondence would
refer to finite subgroups of SU(2). This interpretation is not necessary since the Lorentz group and
Poincare group act in the moduli space of causal diamonds (CDs). The discrete subgroups of SU(2)
appearing in Mac-Kay correspondence act in C as modular transformations.

2. Could SL(3, C) refer to SU(3). It is known that SL(3, C) allows the generalization of Mac-Kay
correspondence to the finite subgroups of SU(3). SU(2) can be identified as a rotation group and
a subgroup of the color group.

Does this pose an interpretational problem? I have encountered a similar problem earlier in the
twistorialization [30]: the twistor spheres of M4 twistor space and CP2 twistor space are identified
and this strongly suggests a close correspondence with the representations of rotation group and
weak gauge group, the holonomy group U(2) of CP2, which is identifiable as a subgroup of SU(3).
The quark and lepton doublets are indeed spin and isospin doublets and this would allow us to
realize this kind of correlation. In the recent formulation of the twistorialization without explicit
introduction of the twistor spaces of M4 and CP2, the twistor spheres appear also as spheres
embedded to the spacetime surfaces in H. Could the identification of these two SU(2) subgroups
be a part of the same story?

3. SL(2, C) could also correspond to the sub-algebra of the Virasoro algebra of the string models.
SL(3, C) would naturally generalize this algebra to a 4-D situation. A generalization of Super
Virasoro algebra involving two variables occurs naturally in TGD. The gauge conditions satisfied
for the Super Virasoro algebra and associated Kac Moody type algebras are essential in string
models. A possible interpretation of the Super Virasoro algebra in terms of infinitesimal analytic
transformations which have interpretation as general coordinate transformations so that although
they do not respect the degree of the polynomial they do not change the physics.

In the TGD framework, a breaking of superconformal invariance is assumed to occur. The half-
algebras associated with these algebras allow an infinite fractal hierarchy of sub-algebras isomorphic
to the entire algebra and super-conformal symmetry can break down to this kind of sub-algebra
[28]. Therefore algebra generators with finite conformal weight below some maximum value would
not act anymore as gauge symmetries but tranform to dynamical symmetries. In the recent case,
these generators could correspond to maps g, which correspond to polynomial or rational functions
with degree below some maximum value.
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4. SL(3, C) would naturally generalize this algebra to a 4-D situation and define the extension of
Virasoro algebra two the case of two complex variables. This would be natural because the string
world sheets are replaced by spacetime surfaces.

Also the representations of the analogs of Super Virasoro and Super Kac-Moody algebras (in particular
super-symplectic algebra) are essential in TGD [28]. A natural expectation is that they are also generalized
modular representations and therefore involve the outer Galois group associated with the space-time
surfaces at the various levels of the hierarchy defined by the maps g. This would conform with the
view that the outer Galois group acts as physical symmetry group in the TGD Universe. I have earlier
developed this view in detail in the construction of quantum states. The original identification of the
Galois group was not however quite correct.

3.4 Langlands duality for the representations of the Lorentz group

In TGD, the modular forms defined in the hyperbolic space H3 are especially interesting. Lorentz group
acts on both. The earlier proposal is that modular forms can be generalized to H3 as an analog of mass
shell or Lorentz invariant cosmic time=constant hyperboloid. The discrete subgroup of SL(2, C) as a
symmetry group would define tessellations of H3: this is a rather strong assumption.

Lorentz group and its discrete subgroups act on H3 or possibly on the light-cone boundary at which
the holographic data resides. Generalized modular forms could be also assigned with WCW spinor fields.
The counterpart of the Galois group would be the same as in the above proposal. This picture applies
also to color symmetries. This would give rise to the analogs of lattice waves in E3. The holographic
data invariant under a discrete subgroup would define tessellations as analogs of the lattices in E3 [27].
One application is a proposal of a universal realization of genetic code based on completely exceptional
tessellation of H3 involves instead of single Platonic solid the three Platonic solids with triangular faces.
Also applications in cosmological scales are possible and there is some empirical evidence that stars could
be assigned to a tessellation of H3 [29].

4 Quantum arithmetics

The function pairs f = (f1, f2) : H → C2 define a function field with respect to element-wise sum and
multiplication. This is also true for the function pairs g = (g1, g2) : C2 → C2. Now functional composition
◦ is an additional operation. This raises the question whether ordinary arithmetics and p-adic arithmetics
might have functional counterparts.

4.1 Functional (quantum) counterparts of integers, rational and algebraic
numbers

Do the notions of integers, rationals and algebraic numbers generalize so that one could speak of their
functional or quantum counterparts? Here the category theoretical approach suggesting that degree of the
polynomial defines a morphism from quantum objects to ordinary objects leads to a unique identification
of the quantum objects.

1. For maps g : C2 → C2, both the ordinary element-wise product and functional composition ◦ define
natural products. The element-wise product does not respect polynomial irreducibility as an analog
of primeness for the product of polynomials. Degree is multiplicative in ◦. In the sum, call it +e,
the degree should be additive. This leads to the identification of +e as an elementwise product.
One can identify neutral element 1◦ of ◦ as 1◦ = Id and the neutral element 0e of +e as ordinary
unit 0e = 1. This is a somewhat unexpected conclusion.

The inverse of g with respect to ◦ corresponds to g−1 for ◦, which is a many-valued algebraic function
and to 1/g for +e. The maps g, which do not allow decomposition g = h ◦ i, can be identified as
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functional primes and have prime degree. If one restricts the product and sum to g1 (say), the degree
of a functional prime g corresponds to an ordinary prime. These functional integers/rationals can
be mapped to integers by a morphism mapping their degree to integer/rational. f is a functional
prime with respect to ◦ if it does not allow a decomposition f = g ◦ h. One can construct integers
as products of functional primes.

2. The non-commutativity of ◦ could be seen as a problem. The fact that the maps g act like operators
suggest that for the functional primes gp the primes in the product commute. Since g is analogous
to an operator, this can be interpreted as a generalization of commutativity as a condition for the
simultaneous measurability of observables.

3. One can also define functional polynomials P (X), quantum polynomials, using these operations. In
the terms pn ◦Xn pn and g should commute and the sum

∑
e pnX

n corresponds to +e. The zeros
of functional polynomials satisfy the condition P (X) = 0e = 1 and give as solutions roots Xk as
functional algebraic numbers. The fundamental theorem of algebra generalizes at least formally if
Xk and X commute. The roots have representations as space-time surfaces. One can also define
functional discriminant D as the ◦ product of root differences Xk −e Xl, with −e identified as
element-wise division.

4.2 About the notion of functional primeness

There are two cases to consider corresponding to f and g. Consider first the pairs (f1, f2): H → C2.

1. Primeness could mean that f does not have a composition f = g ◦ h. Second notion of primeness is
based on irreducibility, which states that f does not reduce to an elementwise product of f = g×h.
Concerning the definition of powers of functional primes in this case, a possible problem is that the
power (fn1 , f

n
2 ) defines the same surface as (f1, f2) as a root with n-fold degeneracy. Irreducibility

eliminates this problem but does not allow defining the analog of p-adic numbers using (fn1 , f
n
2 ) as

analog of pn.

2. Since there are 3 complex coordinates of H, fi are labelled by 3 ordinary primes pr(fi), r = 1, 2, 3,
rather than single prime p. By the earlier physical argument related to cosmological constant
one could assume f2 fixed, and restrict the consideration to f1. Every functional p-adic number,
in particular functional prime, corresponds to its own ramified primes. The simplest functional
would correspond to (f1, f2) = (0, 0) (could this be interpreted as stating the analog of mod p = 0
condition).

3. The degrees for the product of polynomial pairs (P1, P2) and (Q1, Q2) are additive. In the sum, the
degree of the sum is not larger than the larger degree and it can happen that the highest powers
sum up to zero so that the degree is smaller. This reminds of the properties of non-Archimedean
norm for the p-adic numbers. The zero element defines the entire H as a root and the unit element
does not define any space-time surface as a root.

Also the pairs (g1, g2) can be functional primes, both with respect to powers defined by element-wise
product and functional composition ◦.

1. The ordinary sum is the first guess for the sum operation in this case. Category theoretical thinking
however suggests that the element-wise product corresponds to sum, call it +e. In this operation
degree is additive so that products and +e sums can be mapped to ordinary integers. The functional
p-adic number in this case would correspond to an elementwise product

∏
Xn ◦ Pn

p , where Xn is a
polynomial with degree smaller than p defining a reducible polynomial.
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2. A natural additional assumption is that the coefficient polynomials Xn commute with each other
and Pp. This is natural since the Xn and Pp act like operators and in quantum theory a complete
set of commuting observables is a natural notion. This motivates the term quantum p-adics. The
space-time surface is a disjoint union of space-time surfaces assignable to the factors Xk ◦ P k

p ◦ f .
In quantum theory, quantum superpositions of these surfaces are realized. If the surface associated
with Xk ◦ P k

p ◦ f is so large that it cannot be realized inside the CD, it is effectively absent from
the pinary expansion. Therefore the size of the CD defines a pinary cutoff.

4.3 The notion of functional p-adics

What about functional p-adics?

1. The functional powers g◦kp of prime polynomials gp define analogs of powers of p-adic primes and
one can define a functional generalization of p-adic numbers as quantum p-adics. The coefficients
Xk in Xk ◦ gkp are polynomials with degree smaller than p. The first idea which pops up in mind is
that ordinary sum of these powers is in question. What is however required is the sum +e so that
the roots are disjoint unions of the roots of the +e summands Xk ◦ gkp .

2. Large powers of prime appearing in p-adic numbers must approach 0e with respect to the p-adic
norm so that gnP must effectively approach Id with respect to ◦. Intuitively, a large n in gnP
corresponds to a long p-adic length scale. For large n, gnP cannot be realized as a space-time surface
in a fixed CD. This would prevent their representation and they would correspond to 0e and Id.
During the sequence of SSFRs the size of CD increases and for some critical SSFRs a new power
can emerge to the quantum p-adic.

3. One can consider also the analogs of multi-p p-adic numbers with functional prime gp replaced with
a functional integer gn = gp1 ◦ gp2 ... ◦ gpm , n = p1 × p2... × pm. A functional multi-p-adic number
would be a product of factors ak ◦ g◦kn . The coefficients ak as polynomials with degree smaller than
n would ◦-commute with gn and with each other. It is not clear whether gpi

should ◦-commute
with each other. These numbers would form functional adeles.

4. In the TGD framework, one can consider a potential connection to biology and genetic code. TGD
associates to genes what I call dark genes [26, 27]. They consist of dark proton triplets at monopole
flux tubes associated with the DNA. Dark genes would be dynamical units and superpositions of
different dark genes would be analogous to bit sequences and could be involved with quantum
computation-like operations [41] so that the dark genome would be a kind of R& D department of
the genome. The ordinary gene would corresponds to the most probable configuration in a given
superposition as a minimum energy state.

If cognition and data processing reduce to the g-sector, also genetic code could do so. Genetic code
involves 61 active codons plus 3 stop codons. Could the 64 DNA codons correspond to the 64 roots
of g◦62 and could the functional prime g61 = g◦62 /g3 correspond to the 61 codons coding for amino
acids to the 3 stop codons.

Since only the degree of the prime polynomial matters, the factors g2,i in the power need not be
identical and therefore need not be ◦-commutative. Could this serve as a correlate for entanglement
of the protons of dark letters and codons? The DNA letters are bit pairs rather than bits. Could
the 4 letters correspond to pairs g2,1 ◦ g2,2 in which g2,1 and g2,2 do not ◦ -commute and therefore
form an indivisible whole. Could genes correspond to ◦-products of codons and could quantum
entanglement for codons mean non-commutativity of codons with respect to ◦?

The very inspiring discussions with Robert Paster, who advocates the importance of universal Witt
Vectors (UWVs) and Witt polynomials (see this) in the modelling of the brain, forced me to consider
Witt vectors as something more than a technical tool. As the special case Witt vectors code for p-adic
number fields.
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1. Both the product and sum of ordinary p-adic numbers require memory digits and are therefore
technically problematic. This is the case also for the functional p-adics. Witten polynomials solve
this problem by reducing the product and sum purely digit-wise operations.

2. Universal Witt vectors and polynomials can be assigned to any commutative ring R, not only p-adic
integers. Witt vectors Xn define sequences of elements of a ring R and Universal Witt polynomials
Wn(X1, X2, ..., Xn) define a sequence of polynomials of order n. In the case of p-adic number field
Xn correspond to the pinary digit of power pn and can be regarded as elements of finite field Fp,n,
which can be also mapped to phase factors exp(ik2π/p). The motivation for Witt polynomials is
that the multiplication and sum of p-adic numbers can be done in a component-wise manner for
Witt polynomials whereas for pinary digits sum and product affect the higher pinary digits in the
sum and product.

3. In the general case, the Witt polynomial as a polynomial of several variables can be written as

Wn(X0, X1, ...) =
∑

d|n dX
n/d
d , where d is a divisor of n, with 1 and n included. For p-adic numbers

n is power of p and the factors d are powers of p. Xd are analogous to elements of a finite field Gp,n

as coefficients of powers of p.

Witt polynomials are characterized by their roots, and the TGD view about space-time surfaces both
as generalized numbers and representations of ordinary numbers, inspires the idea how the roots of for
suitably identified Witt polynomials could be represented as space-time surfaces in the TGD framework.
This would give a representation of generalized p-adic numbers as space-time surfaces making the arith-
metics very simple. Whether this representation is equivalent with the direct representation of p-adic
number as surfaces, is not clear.

Could the prime polynomial pairs (g1, g2) : C2 → C2 and (f1, f2) : H = M4 × CP2 → C2 (perhaps
states of pure, non-reflective awareness) characterized by ordinary primes give rise to functional p-adic
numbers represented in terms of space-time surfaces such that these primes could correspond to ordinary
p-adic primes?

5 Infinite primes, the notion of rational prime, and holography=
holomorphy principle

The notion of infinite prime [18, 10, 12] emerged a repeated quantization of a supersymmetric arithmetic
quantum field theory in which the many-fermion states and many-boson formed from the single particle
states at a given level give rise to free many-particle states at the next level. Also bound states of these
states are included at the new level. There is a correspondence with rational functions as ratios R = P/Q
of polynomials and infinite prime can be interpreted as prime rational function in the sense that P and
Q have no common factors. The construction is possible for any coefficient field of polynomials identified
as rationals or extension of rationals, call it E.

At a given level implest polynomials P and Q are products of monomials with roots in E, say rationals.
Irreducible polynomials correspond to products of monomials with algebraic roots in the corresponding
extension of rationals and define the counterparts of bound states so that the notion of bound state would
be purely number theoretic. The level of the hierarchy would be characterized by the number of variables
of the rational functions.

Holography= holomorphy principle suggests that the hierarchy of infinite primes could be used to
construct the functions f1 : H → C and f2 : H → C defining space-time surfaces as roots f = (f1, f2).
There is one hypercomplex coordinate and 3 complex coordinates so that the hierarchy for fi would have
4 levels. The functions g : C2 → C2 define a hierarchy of maps with respect to the functional composition
◦. One can identify the counterparts of primes with respect to ◦ and it turns out that the notion of
infinite prime generalizes.
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5.1 The construction of infinite primes

Consider first the construction of infinite primes.

1. Two integers with no common prime factors define a rational r = m/n uniquely. Introduce the
analog of Fermi sea as the product X =

∏
p p of all rational primes. Infinite primes is obtain as

P = nX/r +mr such that m =
∏
pk is a product for finite number of primes pk, n is not divisible

by any pk, and m has as factors powers of some of primes pk. The finite and infinite parts of infinite
prime correspond to the numerator and denominator of a rational n/m so that rationals and infinite
primes can be identified. One can say that the rational for which n and m have no common factors
is prime in this sense.

One can interpret the primes pk dividing r as labels of fermions and r as fermions kicked out from the
Fermi sea defined by X. The integers n and m as analogs of many-boson states. This construction
generalizes also to athe algebraic extensions E of rationals.

2. One can generalize the construction to the second level of the hierarchy. At the second level one
introduces fermionic vacuum Y as a product of all finite and infinite primes at the first level. One can
repeat the construction and now integers r,m and n are products of the monomials P (m/n,X) =
nX/r + mr represented as infinite integers and . The analog of r from the new fermionic vacuum
away some fermions represented by infinite primes P (m/n,X) = nX/r+mr by kicking them out of
the vacuum. The infinite integers at the second level are analogous to rational functions P/Q with
the polynomials P and Q defined as the products of ratio of the monomials p(m/n,X) = X/r+mr
taking the role of n and m. These polynomials are not irreducible.

One can however generalize and assume that they factor to monomials associated with the roots
of some irreducible polynomial P (no rational roots) in some extension E of rationals. Hence also
rational functions R(X) = P (X)/Q(X) with no common monomial factors as analogs of primes
defining the analogs of primes for rational functions emerge. The lowest level with rational roots
would correspond to free many-fermion states and the irreducible polynomials to a hierarchy of
fermionic bound states.

3. The construction can be continued and one obtains an infinite hierarchy of infinite primes repre-
sented as rational functions R(X1, X2, ..Xn) = P (X1, X2, ..Xn)/Q(X1, X2, ..Xn) which have no com-
mon prime factors of level n−1. At the second level the polynomials are P (X,Y ) =

∑
k Pnk

(X)Y k.
The roots Yk of P (X,Y ) are obtained as ordinary roots of a polynomials with coefficients Pnk

(X)
depending on X and they define the factorization of P to monomials. At the third level the coeffi-
cients are irreducible polynomials depending on X and Y and the roots of Z are algebraic functions
of X and Y .

Physically this construction is analogous to a repeated second quantization of a number theoretic
quantum field theory with bosons and fermions labelled/represented by primes. The simplest states
at a given level of free many-particle states and bound states correspond to irreducible polynomials.
The notion of free state depends on the extension E of rationals used.

5.2 Infinite primes and holography= holomorphy principle

How does this relate to holography= holomorphy principle? One can consider two options for what the
hierarchy of infinite prime could correspond to.

1. One considers functions f = (f1, f2) : H → C2, with fi expressed in terms of rational functions of
3 complex coordinates and one hyperbolic coordinate. The general hypothesis is that the function
pairs (f1, f2) defining the space-time surfaces as their roots (f1, f2) = (0, 0) are analytic functions
of generalized complex coordinates of H with coefficients in some extension E of rationals.
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2. Now one has a pair of functions: (f1, f2) or (g1, g2) but infinite primes involve only a single function.
One can solve the problem by using element-wise sum and product so that both factors would
correspond to a hierarchy of infinite primes.

3. One can also assign space-time surfaces to polynomial pairs (P1, P2) and also to pairs rational
functions (R1, R2). One can therefore restrict the consideration to f1 ≡ f . f2 can be treated in the
same way but there are some physical motivations to ask whether f2 could define the counterpart
of cosmological constant and therefore could be more or less fixed in a given scale.

The allowance of rational functions forces raises the question whether zeros are enough or whether
also poles needed?

1. Hitherto it has been assumed that only the roots f = 0 matter. If one allows rational functions P/Q
then also the poles, identifiable as roots of Q are important. The Compactification of the complex
plane to Riemann-sphere CP1 is carried out in complex analysis so that the poles have a geometric
interpretation: zeros correspond to say North Pole and poles to the South pole for the map of
C → C interpreted as map CP1 → CP1. Compactication would mean now to the compactification
C2 → CP 2

1 .

For instance, the Riemann-Roch theorem (see ) is a statement about the properties of zeros and poles
of meromorphic functions defined at Riemann surfaces. The so called divisor is a representation for
the poles and zeros as a formal sum over them. For instance, for meromorphic functions at a sphere
the numbers of zeros and poles, with multiplicity taken into account, are the same.

The notion of the divisor would generalize to the level of space-time surfaces so that a divisor would
be a union of space-time surfaces representing zero and poles of P and Q? Note that the iversion
fi → 1/fi maps zeros and poles to each other. It can be performed for f1 and f2 separately and
the obvious question concerns the physical interpretation.

2. Infinite primes would thus correspond to rational functions R = P/Q of several variables. In the
recent case, one has one hypercomplex coordinate u, one complex coordinate w of M4, and 2
complex coordinates ξ1, ξ2 of CP2. They would correspond to the coordinates Xi and the hierarchy
of infinite primes would have 4 levels. The order of the coordinates does not affect the rational
function R(u,w, ξ1, ξ2) but the hypercomplex coordinate is naturally the first one. It seems that
the order of complex coordinates depends on the space-time region since not all complex coordinates
can be solved in terms of the remaining coordinates. It can even happen that the coordinate does
not appear in P or Q.

The hypercomplex coordinate u is in a special position and one can ask whether rational functions
for it are sensical. Trigonometric functions and Fourier analysis look more natural.

What could be the physical relationship between the space-time surfaces representing poles and zeros?

1. P and Q would have no common polynomial (prime) factors. The zeros resp. poles of R = P/Q as
zeros of P resp. Q are represented as space-time surfaces. Could the zeros and poles correspond to
matter and antimatter. Could one assign baryon and lepton numbers to f1 and f2 and so that the
total baryon and lepton numbers for Pi and Qi would sum up to zero for meromorphic functions fi.

Note that besides the fermionic vacuum annihilated by annihilation operations there is also fermionic
vacuum annihilated by the creation operators and these vacua correspond to opposite boundaries
of CD in ZEO.

2. Could infinite primes have two representations. A four-levelled hierarchy represented as space-
time surfaces in terms of holography= holomorphy principle and as fermion states represented as
hierarchy of second quantizations for both quarks and leptons and corresponding bosonic states.
What could these 4 quantizations mean physically?
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3. Can the space-time surfaces defined by zeros and poles intersect each other? If BSFR permutes the
two kinds of space-time surfaces, they should intersect at 3-surfaces defining holographic data. The
failure of the exact classical determinism implies that the 4-surfaces are not identical.

Does the time reversal in BSFR have a geometric counterpart? Inversion and complex conjugation at
the level of C2 are the obvious candidates.

1. Could the time reversal occurring in ”big” state function reduction (BSFR) change zero to poles
and vice versa and correspond to the inversion fi → 1/fi inducing P/Q → Q/P? The inversion
fi → 1/fi mapping zeros to poles and vice versa can be carried independently for fi. This does
not support the assignment of inversion with the time reversal. This interpretation would also
require that the 3-D regions at the boundary of CD defining holographic data are invariant under
the inversion. This also forces us to ask whether both zeros and poles present for a given arrow of
time or only for one arrow of time? Therefore the interpretation as analog of charge conjugation
mapping fermions to antifermions looks more natural.

2. Complex conjugation replaces the Hamilton-Jacobi structure of H with its conjugate. Complex
conjugation makes sense also for C2. Complex conjugation performed for both H and C2 does not
affect the space-time surfaces. Holomorphic space-time surfaces and their anti-holomorphic complex
conjugates need not be disjoint. For instance, in CP2 a homologically non-trivial geodesic sphere
can be self-conjugate.

If matter and antimatter were related by complex conjugation, holomorphy would require that
matter resp. antimatter resides at holomorphic resp. space-time surfaces: could this relate to
matter-antimatter asymmetry?

Instead of inversion, complex conjugation in C2 could be involved with the time reversal occurring
in BSFR (it would not be the same as time reflection T ). This would require that the 3-D regions
defining holographic data (at the boundary of CD) are invariant under complex conjugation. The
classical worlds with opposite arrows of geometric time would be related by complex conjugation.

5.3 Hierarchies of functional composites of g : C2 → C2

One can consider also rational functions g = (g1, g2) with gi = R = Pi/Qi : C2 → C2 defining abstraction
hierarchies. Also in this case elementwise product is possible but functional composition ◦ and the
interpretation in terms of formation of abstractions looks more natural. Fractals are obtained as a special
case. ◦ is not commutative and it is not clear whether the analogs of primes, prime decomposition, and
the definition of rational functions exist.

1. Prime decompositions for g with respect to ◦ make sense and can identify polynomials f = (f1, f2)
which are primes in the sense that they do not allow composition with g. These primal spacetime
surfaces define the analogs of ground states.

2. The notion of generalized rational makes sense. For ordinary infinite primes represented as P/Q,
the polynomials P and Q do not have common prime polynomial factors. Now / is replaced with
a functional division (f, g) → f ◦ g−1 instead of (f, g) → f/g. In general, g−1 is a many-valued
algebraic function and the manivaluedness distinguishes between the analogs of polynomials and
their inverses. The only exceptions are Möbius transformations forming a group. In the one-variable
case for polynomials the inverse involves algebraic functions appearing in the expressions of the roots
of the polynomial. This means a considerable generalization of the notion of infinite prime.

What matters physically are the roots of g ◦ h−1. The condition g ◦ h−1f = 0 has as roots h(rn),
where rn is the roots of g ◦ f = 0. Therefore the situation is simple at the level of space-time
surfaces. Could one think of generalizing the notion of group so that the counterparts of group
operations would be many-valued?
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3. One obtains the counterpart for the hierarchy of infinite primes. The analog for the product of
infinite primes at a given level is the composite of prime g:s. The irreducible polynomials as
realization of bound states for ordinary infinite primes replaces the coefficient field E with its
extension. The replacement of the rationals as a coefficient field with its extensions E does the
same for the composes of g:s. This gives a hierarchy similar to that of irreducible polynomials: now
the hierarchy formed by rational functions with increasing number of variables corresponds to the
hierarchy of extensions of rationals.

4. The conditions for zeros and poles are not affected since they reduce to corresponding conditions
for g ◦ f .

6 Some questions related to the maps g

The maps g and possibly also their inverses which would be central in the realization of cognition and
reflective hierarchies. These ideas are however far from their final form and in the following I try to
imagine and exclude various alternatives.

6.1 What could happen in the transition f → g ◦ f?

The proposal is that in SSFR the transition f → g ◦ f takes place. The number of roots becomes n-fold
if g is a rational function of form P/Q. What could this transition mean physically? One can consider
two options.

6.1.1 The option allowing quantum realization of concept

The nm roots (poles and zeros) for g ◦ f , where f as m roots would be alternative outcomes of SSFR
of which only a single outcome, or possible quantum superposition of the outcomes would be selected.
What is so nice is that the classical non-determinism crucial for the TGD view of consciousness would
follow automatically from the holography= holomorphy hypothesis without any additional assumptions.

Conservation laws conform with this view. All the alternative Bohr orbits would have the same
classical conserved charges. The quantum superposition of the roots would represent a particular quantum
realization of a concept and f → g ◦ f would mean a refinement of the quantum concept defined by f .

The hypothesis that the classical non-determinism correspond to the p-adic non-determinism would
transform to a statement that different Bohr orbits associated g◦k define analogs for the sequences of k
pinary digits if there are p outcomes for g ◦ f . A possible interpretation would be in terms of a k-digit
pinary digit sequence in powers of p. The largest integer would correspond to n = 2k for g◦k. The
generalization of the notion of the notion of p-adic numbers for which p is replaced by a functional prime
g and based on the generalization of Witt polynomials is suggestive. It remains unclear whether this
could allow us to understand the generalization of the p-adic length scale hypothesis stating that a large
prime p ' pk can be assigned to this set of Bohr orbits.

6.1.2 The option allowing a classical realization of concept

The union of nm space-time surfaces, where n is the degree of g and m is the number of roots of f , is
generated in the step f → g ◦ f . The set of the nm space-time surfaces would give a classical realization
of a concept as a set. Does this make sense?

The first grave objection is that there is no continuous time evolution between f and g ◦f multiplying
the number of space-time surfaces by n. Second objection relates to the conservation laws which seem
to be violated. The third objection is that classical non-determinism is lost. It seems that this objection
cannot be circumvented. One can however consider the analogs of many-particle states in which some
surfaces of this set carry fermionic zero energy states.
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One can try to imagine ways to overcome the first two objections.
Option I: ZEO interpreted in the ”eastern” sense in principle allows the creation of n space-time

surfaces from each of the m space-time surfaces associated with f . This is because the total classical
charges of the zero energy states as sums of those for states at the boundaries of CD vanish. Zero energy
state would be analogous to a quantum fluctuation.

Option II: In standard ontology, the classical realization of the concept as union of space-time surfaces
defining its instances is possible only in a situation in which space-time surfaces are vacua or nearly vacua.
Could this kind of surface serve as a template for the non-vacuum physical systems?

Cell replication, which would correspond to n = 2 for g, was motivated by the consideration of both
options, at least half-seriously. The instantaneous replication of the space-time surface representing the
cell does not look sensible since the generation of biomatter requires a feed of metabolics and metabolic
energy. Could a replicated field body serve as a kind of template for the formation of a final state involving
two cells generated in f → g ◦ f? Could the replication occur at the level of the field body, proposed to
control the biological body?

For Option II, conservation laws pose a problem for replication. In ZEO the classical charges of the
space-time nm surfaces should be those associated with the passive boundary of CD and therefore same
as those for f .

1. Could the space-time surfaces be special in the sense that the classical charges vanish? The vanishing
of classical conserved charges is not possible unless the classical action reduces to Kähler action
allowing vacuum extremals. The finite size of CD indeed allows by Uncertainty Principle a slight
violation of the classical conservation laws assignable to the Poincare invariance [37]. This cannot
be excluded and the original proposal [8, 16] indeed was that Kähler action defines the classical
action by its unique property of having huge classical non-determinism defining the 4-D analog of
spin-glass degeneracy [17] which could play a key role in biology.

If one assigns to M4 the analog of the Kähler structure [36], this argument weakens since the induced
M4 and CP2 Kähler forms must vanish for the vacuum extremals. However, for a given Hamilton-
Jacobi structure defining the M4 Kähler form, there exist space-time surfaces of this kind. They are
Cartesian products of Lagrangian 2-manifolds of M4 and CP2 defining vacuum string world sheets.

Holography= holomorphy principle, implying that Bohr orbits are minimal surfaces, seems to hold
true for any classical action, which is general coordinate invariant and is determined by the induced
geometry. For the Kähler action, the coefficient Λ of the volume term, defining the analog of
cosmological constant, would vanish. Holography= holomorphy principle does not allow Cartesian
products of Lagrangian 2-manifolds of M4 and CP2. One could hope that their vacuum property
could change the situation but this does not look an elegant option.

2. For the standard ontology, one can also consider another option. The classical action, and therefore
the classical conserved charges, are for the twistor lift proportional to 1/αK , where αK is Kähler
coupling strength. The conservation of charges would suggest αK → nαK requiring heff → heff/n
in the n-fold multiplication. For heff = h this would require h→ h/n. This looks strange.

h need not however be the minimal value of heff and I have considered the possibility that one
has h = n0h0 [35], where n0 corresponds to the ratio R2(CP2)/l2P . CP2 size scale would be given
by Planck length lP size scale but for h = n0h0 the size scale would be scaled up to R2 ∼ n0l

2
P ,

n0 ∈ [107, 108]. The estimate for n0 is given by n0 = (7!)2 having numbers 2, 3, 5, 6, 7 (primes
2, 3, 5, 7) as factors [35]. R(CP2) would naturally correspond to the M4 size of a wormhole throat.
h could be reduced by a factor appearing in n0 and there is some evidence for the reduction of heff
by a small power of 2 [4]. This mechanism could work for a functional prime g characterized by
prime p ∈ {2, 3, 5, 7}.

To classical realization of concept does not look realistic except possibly for Option I.
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6.2 About the interpretation of the inverses of the maps g

What could be the interpretation of the inverse maps g−1 for g = P/Q, assuming that they can occur?
g−1 is a multivalued algebraic function analogous to z1/n. In f → g−1 ◦ f the roots rn of f are mapped
to g(rn) so that their number does not increase. For the iterate of g, g−1 means the reduction of the
number of roots by 1/n. The complexity does not increase and can even decrease.

This is just the opposite for what occurs in f → g ◦ f . The increase of complexity is assigned with
number theoretic evolution and NMP. Suppose for a moment that the inverses g−1 are allowed. What
could be their interpretation?

1. The sequence of the inverses g−1 does not correspond to non-determinism and does not give rise to
a refinement of either classical or quantum concept. There is no increase of complexity and it can
be reduced for iterates.

2. Could the reduction of the cell to stem cell level as a reverse of cell differentiation, which occurs
by cell replications, correspond at the level of the field body to a sequence of g−1:s reducing the
complexity. Could cancer correspond to this kind of process? This would conform with the inter-
pretation in terms of the reduction of negentropy.

3. The first option is that the maps of type g−1 are possible for both arrows of the geometric time.
For the iterates of g, g−1 destroys complexity and information and reduces the level of cognition in
this case. g−1 would obey anti-NMP in this case. Both maps g and g−1 make possible a trial and
error process. If an iterate of g is not involved, the roots rn of h ◦ f are mapped by g to roots g(rn)
and the number of roots is preserved. It is not clear whether the algebraic complexity is increased
or reduced.

This suggests that NMP [13] is not lost if both maps of type g and g−1 are allowed? Furthermore,
there is a lower bound for algebraic complexity but no upper bound so that it seems that NMP
remains true even if maps of type g−1 are allowed.

Any quantum theory of consciousness should be able to say something about the quantum correlates
of ethics [19]. In TGD, one can assign the notion of good to state function reductions (SFRs)
inducing the increase of quantum coherence occurring in a statistical sense in SFRs. It would
correspond to the increase of algebraic complexity and would be accompanied by the increase of
heff and the amount of potentially conscious information. Is evil something something analogous
to a thermodynamic fluctuation reducing entropy or can one speak of an active evil? Could the
notion of evil as something active be assigned with the occurrence of maps of type g−1?

4. The maps of type g and g−1 are reversals of each other and differ unless they act as symmetries
analogous to Möbius transformations. Could they be assigned with SSFRs with opposite arrows of
geometric time? If so, negentropy would not increase for both arrows of the geometric time and
there would be a universal arrow of time analogous to that assumed in standard thermodynamics
and defined by negentropy increase. If a universal arrow of time exists, it should somehow relate to
the violation of time reflection symmetry T . To me this option does not look plausible.

If this is the case, the trial and error process allowed by ZEO and based on pairs of BSFRs would
involve a map of type g−1 induced by SSFRs whereas the second BSFR would correspond to a map
of type g. The sequence of SSFRs after the first BSFR would preserve or even reduce complexity
and would mean starting from a new state at the passive boundary (PB) of CD. If the first BSFR
is followed by a sequence of SSFRs of type g, it in general leads to a more negentropic new initial
state at PB.

6.3 Could one understand p-adic length scale hypothesis?

What could be the physical interpretation of the prime polynomials (f1, f2) and (g1, g2), in particular
(g1, Id) and how it relates to the p-adic length scale hypothesis [25]?
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1. p-Adic length scale hypothesis states that the physically preferred p-adic primes correspond to
powers p ' 2k. Also powers p ' qk of other small primes q can be considered [15] and there is
empirical evidence of time scales coming as powers of q = 3 [5, 6]. For Mersenne primes Mn = 2n−1,
n is prime and this inspires the question whether k could be prime quite generally.

2. Probably the primes as orders of prime polynomials do not correspond to very large p-adic primes
(M127 = 2127 − 1 for electron) assigned in p-adic mass calculations to elementary particles.

The proposal has been that the p and k would correspond to a very large and small p-adic length
scale. The short scale would be near the CP2 length scale and large scale of order elementary
particle Compton length.

Could small-p p-adicity make sense and could the p-adic length scale hypothesis relate small-p p-
adicity and large-p p-acidity?

1. Could the p-adic length scale hypothesis in its basic form reflect 2-adicity at the fundamental level
or could it reflect that p = 2 is the degree for the lowest prime polynomials, certainly the most
primitive cognitive level. Or could it reflect both?

2. Could p ' 2k emerge when the action of a polynomial g1 of degree 2 with respect to say the complex
coordinate w of M4 on polynomial Q is iterated functionally: Q → PcircQ → ...P ◦ ...P ◦ Q and
give n = 2k disjoint space-time surfaces as representations of the roots. For p = 2 the iteration
is the procedure giving rise to Mandelbrot fractals and Julia sets. Electrons would correspond to
objects with 127 iterations and cognitive hierarchy with 127 levels! Could p = M127 be a ramified
prime associated with P ◦ ... ◦ P .

If this is the case, p ' 2k and k would tell about cognitive abilities of an electron and not so
much about the system characterized by the function pair (f1, f2) at the bottom. Could the 2k

disjoint space-time surfaces correspond to a representation of p ' 2k binary numbers represented as
disjoint space-time surfaces realizing binary mathematics at the level of space-time surfaces? This
representation brings in mind the totally discontinuous compact-open p-adic topology. Cognition
indeed decomposes the perceptive field into objects.

3. This generalizes to a prediction of hierarchies p ' qk, where q is a small prime as compared to p
and identifiable as the prime order of a prime polynomial with respect to, say, variable w.

I have considered several identification of the p-adic primes and arguments for why the p-adic length
scale hypothesis should be true.

1. One can imagine I have tentatively identified p-adic primes as ramified primes [25] appearing as
divisors of the discriminant Dof a polynomials define as the product of root differences, which could
correspond to that for g = (g1, Id).

Could the 3 primes characterizing the prime polynomials fi : H → C2 correspond to the small
primes q? Could the ramified primes p ' 2k as divisors of a discriminant D defined by the product
of non-vanishing root differences be assigned with the polynomials obtained to their functional
composites with iterates of a suitable g?

Similar hypotheses can be studied for the iterates of g : C2 → C2 alone. The study of this hypothesis
in a special case g = P2 = x(x− 1) described in an earlier section did not give encouraging results.
Perhaps the identification of p-adic prime as ramified primes is ad hoc. There is also the problem
that there are several ramified primes, which suggests multi-p-p-adicity. The conjecture also fails
to specify how the ramified prime emerges from the iterate of g.

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com

Published by QuantumDream, Inc.



Prespacetime Journal | January, 2026 | Volume 17 | Issue 1 | pp. 20-49 42

Pitkänen, M., A More Detailed View on the TGD Counterpart of Langlands Correspondence

2. A new identification of p-adic primes suggested by quantum p-adics is that p-adic primes correspond
to primes defining the degrees of prime polynomials g and that the Mersenne primes Nn = 2n − 1
correspond to rational functions P ◦n2 /P1, where / corresponds to element-wise-division and P2 can
be any polynomials of degree 2. This would mean category theoretic morphism of quantum p-adics
to ordinary p-adics. A more general form of the conjecture is that the rational functions P ◦np /Pk

correspond to preferred p-adic primes.

The reason could be that for these quantum primes it is possible to solve the roots as zeros and
poles analytically for p < 5. This might make them cognitively very special. The primes p = 2 and
p = 3 would be in a unique role information theoretically. For these primes there is indeed evidence
for the p-adic length scale hypothesis and these primes are also highly relevant for the notion of
music harmony [14, 11, 20, 7, 27].

As already found, the notion of functional prime allows a generalization of the notion of adeles. Do the
ramified primes have any role in the theory? The proposal that the classical action exponential corresponds
to a power of discriminant as the product of ramified primes for a suitably identified polynomial is very
attractive and could be kept.

6.4 Does Mother Nature love her theoreticians?

The hypothesis that Mother Nature is theoretician friendly [9, 40] involves quantum field theoretic think-
ing, which can be motivated in TGD by the assumption that the long length scale limit of TGD is
approximately described by quantum field theory. What this principle states is the following.

1. When the quantum states are such that perturbative quantum field theory ceases to converge, a
phase transition heff → nheff occurs and reduces the value of the coupling strength αK ∝ 1/~eff
by factor a 1/n so that the perturbation theory converges. This can take place when the coupling
constant defined by the product of charges involved is so large that convergence of QFT perturbation
series is lost or more generally, unitarity fails. The phase transition gives rise to quantum states,
which are Galois singlets for the larger Galois group.

2. The classical interpretation would be that the number of space-time surfaces as roots of g1 ◦ f1
increases by factor n, where n is the order of polynomial g1. The intuitive view is that the total
classical action should be unchanged. This is the case if at the criticality for the transition the n
space-time surfaces are identical and on top of each other.

Can the transition take place in BSFR or even SSFR? Can one associate a smooth classical time
evolution with f → g◦kp ◦f producing p copies of the original surface at each step such that the replacement
αK → αK/p occurs at each step?

1. The transition should correspond to quantum criticality, which should have classical criticality
in algebraic sense as a correlate. Polynomials xn have x = 0 as an n-fold degenerate root. In
mathematics degenerate roots are regarded as separate. Now they would correspond to identical
space-time surfaces on top of each other such that even an infinitesimal deformation can separate
them. If the copies are identical at quantum criticality, a smooth evolution associated with a
sequence of SSFRs leading to an n-multiple of approximate compies of a single space-time surface
is possible. The action would be preserved approximately and the proposed scaling down of αK

would guarantee this.

2. The catastrophe theoretic analogy is the vertex of a cusp catastrophe. At the vertex of the cusp 3
roots coincide and at the V-shaped boundary of the plane projection of the cusp 2 roots coincide.
What is remarkable is that cusps (see this) are building bricks of more complex catastrophes in
catastrophe theory [1]. More generally, the initial state should be quantum critical with pk degener-
ate roots. In the simplest one would have p degenerate roots and p = 2 and p = 3 and their powers
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are favored empirically and by the very special cognitive properties of these options (the roots can
be solved analytically). Also this suggest that Mother Nature indeed loves her theoreticians.

3. g1(f1) = fp1 would satisfy the condition. An arbitrary small deformation of fp1 by replacing it with

ak◦fkp1 would remove the degeneracy. The functional counterpart of the p-adic number would be +e

sum of g1,k = ak ◦ fkp1 as product
∏

k g1,k. Each power would correspond to its own almost critical
space-time surface and ak = 1 would correspond to maximal criticality. This would correspond to
the number

∑
pk and one would obtain Mersenne primes and general versions for p > 2 naturally

from maximal criticality giving rise to functional p-adicity. The classical non-determinism due to
criticality would correspond naturally to p-adic non-determinism.

6.5 Holography= holomorphy principle and O −H duality

The situation concerning the relationship between number theoretic and geometric views of TGD looks
rather satisfactory but there are many questions to be asked and answered. O−H duality, where O allows
interpretation as M8, can be seen as an analog of momentum-position duality from point-like particles
to 3-surfaces. The understanding of O−H duality as a duality between number theoretic and geometric
view is not entirely satisfactory: skeptic could even ask whether the M8 view produces more problems
than it solves.

1. The key idea is that associativity defines the number theoretical dynamics. The 4-surfaces Y 4 in M8

would be associative in the sense that either the normal space or tangent is associative and therefore
quaternionic [38, 39]. M8 − H duality mapping Y 4 to space-time surface X4 in H requires that
the normal or tangent space corresponds to a point of CP2. This is true satisfied if the normal or
tangent space contains an integrable distribution of 2-D complex surfaces. This means that tangent
or normal space is commutative.

2. The first crucial step was that every 4-D distribution of associative normal spaces is integrable
whereas only very few 4-D distributions of associative tangent spaces are integrable: perhaps only
M4 ⊂ M8 are this kind of 4-surfaces. Both options could be realized but the normal space-time
option would make dynamics possible.

3. The second crucial step in the understanding of M8 − H duality came with the realization that
one can provide octonions O with Minkowskian number theoretic metric defined by Re(o1o2) giving
Minkowskian norm squared as Re(o2) [30]. This made it possible to give up the earlier complexifi-
cation of M8 to M8

c needed to get Minkowski signature, which led to a rather complicated picture.

In conflict with the original belief, the surface Y 4 in M8 has Euclidean induced metric since quater-
nionic normal space has Minkowskian signature. This suggests that the mass squared range for
the points of M8 is finite and therefore also the image in H has finite range. This would conform
with the zero energy ontology in which space-time surfaces are located inside causal diamond and
fermionic states are at its boundaries and also at the loci of non-determinism in the interior of the
CD. As already noticed, tangential associativity would allow M4 ⊂ M8: could this give rise to a
universal reference frame?

One implication is that the momentum space in M4 ⊂M8 contains only real momenta and momenta
are complex only in the sense that they have hypercomplex and complex parts (p0 + pz, p0 − pz)/2
and (px + ipy, px − ipy)/2. Complex extensions E of rationals are possible but the momenta as
algebraic integers must be real numbers.

4. The proposal was that, in accordance with Uncertainty Principle, M8−H duality maps M4 ⊂ O as
a quaternionic subspace (not unique) to M4 ⊂ H by inversion mk → h1m

k/mlml. A natural iden-
tification of h1 would be as effective Planck constant heff . Unfortunately, this was not mentioned
explicitly in the original version of [30] although it has been mentioned many times elsewhere.
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How does the holography= holomorphy principle relate to the M8 −H duality?

1. M8 = M4 × E4 should have an H-J structure [36]: could the H-J structures on M8 and H should
be equivalent? The inversion mk → hheffm

k/mlml in M4 degrees of freedom is a conformal
transformation and could preserve the H-J structure.

Associativity conditions require a distribution of complex subspaces for quaternionic normal/tangent
space implying distribution of hypercomplex tangent/normal spaces which are commutative. This
corresponds to the H-J structure naturally.

2. The equations f = (f1, f2) = (0, 0) for f : H → C2 realize holomorphy= holography at H side and
the maps g = (g1, g2) : C2 → C2 act as dynamical symmetries. It would not be surprising if similar
equations but with different f and would g realize the associativity conditions in M8.

3. Could holomorphy make it possible to realize M8 − H duality as a local correspondence between
the points of M8 and H? This is not at all clear since it is the normal or tangent spaces of Y 4,
which are mapped to H so that the correspondence is not local.

CP2 is obtained by a compactification of C2 by adding to it a homologically non-trivial CP1 at
infinity. Could this be realized using a generalization of the stereographic projection C → CP1:
(X,Y )→ (x, y, z) realized as sphere in E3 defined by x2 + y2 + z2 = R2?

This does not seem to be the case. Stereographic projection C → CP1 is defined the conditions

(X,Y ) =

(
x

1− z
,

y

1− z

)
,

(x, y, z) =

(
2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,
−1 +X2 + Y 2

1 +X2 + Y 2

)
.

Here X + iY = Z defines a complex coordinate of C and x+ iy defines the complex coordinate of
CP1. Note that CP1 can be also realized as a coset space S3/U(1) = SU(2)/U(1).

CP2 can be realized as the coset SU(3)/U(2) also as ”coset space” S5/U(1), where one has S5 ⊂ C3.
The points of CP2 consist of orbits of U(1) as circles in S5. The generalization of stereographic
projection to the case of C2 → CP2 would require the realization of CP2 as a 4-surface in E5. The
straightforward generalization would give S4 instead of CP2.

A Appendix: Ramified primes for the iterates g◦np

p-Adic length scale hypothesis [21, 22, 25] states that physically interesting p-adic primes p are near to
powers of q = 2 and possibly also q = 3. Could p-adic length scale hypothesis relate to the iteration
of polynomials Pq? A second conjecture, or rather question, is whether p-adic primes p assigned to
elementary particles in p-adic mass calculations correspond to ramified primes for a suitably identified
polynomial. The following argument does not support this conjecture.

One can ask whether the analogs of ramified primes polynomials assignable abstraction hierarchies
g ◦ g ◦ ... ◦ f and powers g◦n. The physically interesting special case corresponds to g = (gp, Id) for which
the degrees of the iterates g◦np are n× p, p the prime assignable to prime polynomial gp.

1. The ramified primes for gp ◦ gp ◦ ...gp ◦ f and gnp define analogs of powers pn of p-adic numbers.
Note that the roots of gp ◦ gp ◦ ...gp ◦ f are a property of gp ◦ gp ◦ ...gp and do not depend on f in
case that they exist as surfaces inside the CD.
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2. There is hope that even the p-adic length scale hypothesis could be understood as a ramified primes
assignable to some functional prime. The large values of p-adic primes require that very large
ramified primes for the functional primes (f1, f2). This would suggest that the iterate g ◦ ..... ◦ g ◦ f
acting on prime f is involved. For p ' qk, kth power of g characterized by prime g is the first guess.

Generalized p-adic numbers as such are a very large structure and the systems satisfying the p-
adic length scale hypothesis should be physically and mathematically special. Consider the following
assumptions.

1. Consider generalized p-adic primes associated restricted to the case when f2 is not affected in the
iteration so that one has g = (g1, Id) and g1 = g1(f1) is true. This would conform with the
hypothesis that f2 defines the analog of a slowly varying cosmological constant. If one assumes
that the small prime corresponds to q = 2, the iteration reduces to the iteration appearing in the
construction of Mandelbrot fractals and Julia sets. If one assumes g1 = g1(f1, f2), f2 defines the
analog of the complex parameter appearing in the definition of Mandelbrot fractals. The values
of f2 for which the iteration converges to zero would correspond to the Mandelbrot set having a
boundary, which is fractal.

2. For the generalized p-adic numbers one can restrict the consideration to mere powers gn1 as analogs
of powers pn. This would be a sequence of iterates as analogs of abstractions. This would suggest
g1(0) = 0.

3. The physically interesting polynomials g1 should have special properties. One possibility is that for
q = 2 the coefficients of the simplest polynomials make sense in finite field F2 so that the polynomials
are P2(z ≡ f1, ε) = z2 + εz = z(z + ε), ε = ±1 are of special interest. For q > 2 the coefficients
could be analogous to the elements of the finite field Fq represented as phases exp(i2πk/3).

One can see what these premises imply. Here Tuomas Sorakivi helped to do the calculations using
the assistance of a large language model.

1. Quite generally, the roots of P ◦n(g1) are given R(n) = P ◦−n(0). P (0) = 0 implies that the set Rn

of roots at the level n are obtained as Rn = Rn(new)∪Rn−1, where Rn(new) consist of q new roots
emerging at level n. Each step gives qn−1 roots at the previous level and qn−1 new roots.

2. It is possible to analytically solve the roots for the iterates of polynomials with degree 2 or 3. Hence
for q = 2 and 3 (there is evidence for the 3-adic length scale hypothesis) the inverse of g1 can be
solved analytically. The roots at level n are obtained by solving the equation P (rn) = rn−1,k for all
roots rn−1,k at level n− 1. The roots in Rn−1(new) give qn−1 new roots in Rn(new).

3. For q = 2, the iteration would proceed as follows:

0→ {0, r1} → {0, r1} ∪ {r21, r22} → {0, r1} ∪ {r21, r22} ∪ {r121, r221, r122, r222} → ... .

4. The expression for the discriminant D of g◦n1 can be deduced from the structure of the root set. D
satisfies the recursion formula D(n) = D(n, new)×D(n− 1)×D(n, new;n− 1). Here D(n, new) is
the product ∏

ri,rj∈∈D(n,new)

(ri − rj)2

and

D(n, new;n− 1) is the product
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∏
ri∈D(n,new),rj∈D(n−1)

(ri − rj)2 .

5. At the limit n→∞, the set Rn(new) approaches the boundary of the Fatou set defining the Julia
set.

As an example one can study discriminant D and ramified primes for the iterates of g1(z) = z(z − ε).
Does it produce Mersenne primes or primes near a power of 2 as ramified primes as the p-adic length
scale hypothesis predicts? Of course, there exists an endless variety of these kinds of polynomials but one
might hope that the chosen polynomial might be special because of its 2-adic features. The study was
carried out with Tuomas Sorakivi.

1. The roots of z(z−ε) = 0 are {0, r1} = {0, ε}. At second level, the new roots satisfy z(z−ε) = r1 = ε
given by {(ε/2)(1±

√
1 + 4r1}. At the third level the new roots satisfy z(z − ε) = r2 and given by

{(ε/2)(1±
√

1 + 4r2}.

2. The points z = 0 and z = ε are fixed points. Assume ε = 1 for definiteness. The image points
w(z) = z(z− ε) satisfy the condition |w(z)/z| = |z− 1|. For the disk D(1, 1) : |z− 1| ≤ 1 the image
points therefore satisfy |w| ≤ |z| ≤ 2 and belong to the disk D(0, 2) : |z| ≤ 2.

For the points inD(0, 2)\D(1, 1) the image point satisfies |w| = |z−1||z| giving |z|−1| ≤ |w| ≤ |z|+1.
Inside D(0, 2)\D(1, 1) this gives 0 ≤ |w| ≤ 3. Therefore w can be inside D(2, 0) including D(1, 1)
also inside disk D(0, 3).

For the points z outside D(2, 0) |w| = |z − 1||z| ≥ 2. So that the iteration leads to infinity here.

3. For the inverse of the iteration relevant for finding the roots of f◦(−n) leads from the exterior of
D(2, 0) to its interior but cannot lead from interior to the exterior since in this case f would lead
to exterior to interior. Hence the values of the roots wn in ∪nf◦(−n)(0) belong to the disc D(2, 0).

4. One can look at the asymptotic situation for very large values of n. At nth step 2n−1 new roots
emerge by doubling and one has rn+1,± = (1/2)(1 ±

√
1 + 4rn,±). For rn,± < −1/4 the root pair

becomes complex and could stay complex at the next steps. This happens already at the step from

r2 = 1/2(1±
√√

5)→ r3. If the iteration gives at some step a double real root, its further iterations
could approach a fixed point at this limit. This root rn → r would satisfy r = (1/2)(1 ±

√
1 + 4r)

giving r2 − 2r = 0 with root r1 = 2 and r1 = 0 these are the intersections of the disk D(0, 2) with
real axis. Note that r1 = 2 is not a fixed point of z(z − 1).

There should exist a root rn, which at the real axes in the range (0, 2). This would require that
1+4rn = 0 giving a double root rn = −1/4. The next steps would give rn+1 = +1/2±

√
3→ rn+2 =

1/2(1±
√

2±
√

3). Second root would be complex. The positive real roots are rn+1,+ ' 1.366 and
rn+2,+ = 1.7708. This suggests that the convergence to r = 2 takes place for the positive roots. If
this is the case the D discriminant contains the product of the differences for these positive roots
approaching zero. There is however no guarantee that the double root rn = 1/2 emerges in the
iteration.

The prime decompositions of D for k = 1, 2, ..., 7 are {1 : 1}, {5 : 1}, {5 : 3, 11 : 1}, {5 : 7, 11 : 3, 311 :
1}, {2 : 48, 3 : 3, 43 : 1, 73 : 1, 6577 : 1, 5521801 : 1,−1 : 1}, {2 : 209, 59 : 2, 3117269 : 1, 356831 : 1},
{2 : 596, 2358900226164371 : 1,−1 : 1}, where p : m denotes the prime and its multiplicity. −1 : 1
tells that the discriminant is negative.

The conjecture was that the discriminant D for the iterate has Mersenne primes as factors for primes
n defining Mersenne primes Mn = 2n − 1 and that also for other values of n D contains as a factor
ramified primes near to 2n. The above calculation shows that this is not the case for the polynomial
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P2(x) = x(x − 1) for small n. There are an infinite number of polynomials of order two but the idea of
starting to search all of them does not look attractive. This forces to challenge the proposal that p-adic
primes could correspond to ramified primes. The p-adic length scale hypothesis however looks attractive.
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