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Abstract 

It was recently conjectured that the Standard Model of particle physics resides on a bifurcation 

diagram generated by the recursive scaling of the Higgs coupling. This sequel explores the 

relationship between the bifurcation diagram and the Path Integral (PI) formalism of Quantum 

Field Theory (QFT). The long-term goal is to base the Feynman diagrams on the properties of 

the Feigenbaum attractor of either quadratic or cubic maps.   
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1. Introduction 

It is well known that low-dimensional maps (such as quadratic, Hénon or cubic maps) serve as 

prime models of nonlinear science and chaos theory. Moreover, when tied in with the logistic 

equation, quadratic maps illustrate key concepts of chaotic behavior, including period-doubling 

bifurcations, universality, Lyapunov stability, strange attractors and sensitive dependence on 

initial conditions. 

Recent research confirms that low-dimensional maps are also highly relevant to complex 

dynamics, in general, and the nonintegrable regime of QFT and particle physics, in particular: 

1) Far above the electroweak scale, reaction-diffusion processes involving dimensional 

fluctuations lead to quadratic maps and the complex Ginzburg-Landau equation [2 - 3]. 

2) The Standard Model unfolds under recursive bifurcations of the cubic map, the latter being 

derived from the Renormalization Group (RG) flow of the Higgs coupling. Both particle and 

Dark Matter condensates act as fixed points of the bifurcation diagram [1].  

3) Large systems of evolution equations can be shown to reduce to either quadratic or cubic 

forms following the center manifold theory [4].  

                                         

*Correspondence: Ervin Goldfain, Ph.D., Research Scholar, Global Institute for Research, Education and 
Scholarship (GIRES), USA. E-mail: ervin.goldfain@ronininstitute.org 



Prespacetime Journal| January 2026| Volume 17 | Issue 1 | pp. 91-102 

Goldfain, E., On the Feigenbaum Attractor & Feynman Diagrams 

 

ISSN: 2153-8301 Prespacetime Journal 

Published by QuantumDream, Inc. 

www.prespacetime.com 

 

92

This exploration is a sequel to [1], where bifurcations start with the formation of a Higgs 

condensate and end up with the formation of a top-antitop (tt ) condensate. The long-term goal 

of this work is to base the Feynman diagrams on the properties of the Feigenbaum attractor of 

either quadratic or cubic maps. 

The report is organized as follows: working assumptions and conventions used throughout are 

covered in the next section. Section 3 outlines the remarkable (yet largely underappreciated) 

analogy between the self-similarity of fractal structures and Feynman diagrams; Building on 

section 3, section 4 elaborates on the topic of random walks on the Feigenbaum attractor. The PI 

formulation of the Feigenbaum attractor in terms of field theory forms the subject of section 5. A 

summary is included in the last section. Designed as an introductory/pedagogical study, the 

paper is presented in an accessible format and is open for independent scrutiny and unbiased 

analysis. 

 

2. Assumptions and conventions 

A1) With reference to [1], fields undergoing bifurcations are denoted as x , the time-scale for 

field evolution   is the continuous analog of the iteration index n , and the one-parameter of 

either quadratic or cubic map is denoted by r . 

A2) The quadratic and cubic maps studied herein are one-parameter unimodal (or “single peak”) 

maps, written as 

 
11 1( ) (1 )r n n nnx x r x xf    (1) 

 
2

2
1 2( ) (1 )r n n nnx x r x xf    (2) 

A3) There are two representative time scales entering the derivation below, namely, 

a) an RG scale for field evolution 0log( )   , where   is the observation scale. 

 b) an RG scale for the flow of couplings denoted by l . 

A4) The “Feigenbaum fixed point” and the “Feigenbaum attractor” are respectively defined as 

follows: 

a) The Feigenbaum fixed point is a mathematical concept of Renormalization theory, 

describing the universal scaling of period-doubling cascades (Appendix B). 
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b) The Feigenbaum attractor is a fractal structure of actual dynamical systems at the 

transition to fully developed chaos. In quadratic or cubic maps, the attractor develops in 

proximity to the accumulation point 1,2r r , is self-similar and has a fractal dimension 

greater than 1 (Appendix A). 

 

3. Self-similarity of fractal structures and Feynman diagrams 

It is well known that Feynman diagrams are graphical representations of interactions in QFT. 

Particle interactions are pictured using vertices, lines, and loops, where each loop corresponds to 

quantum corrections in perturbation theory. The expansion in Feynman diagrams follows a 

recursive structure—higher-order terms in the perturbation series contain additional interaction 

vertices and loops. This procedure leads to self-similar patterns of ever-increasing complexity. 

Although both Feynman diagrams and fractal structures exhibit self-similarity, they arise in 

different contexts within physics and mathematics. The connection between them can be 

explored through their shared recursive/iteration attributes. The analogy between Feynman 

diagrams and fractals stems from the way QFT accounts for the contribution of radiative 

corrections. In particular, 

a) the RG flow describes how physical parameters of the theory (such as masses and coupling 

constants) change with the observation scale. This scaling behavior often exhibits self-

similarity, as physics at one scale nearly replicates that at another. 

b) The inclusion of additional loops and sub-diagrams in Feynman diagrams resembles the 

iterative growth of fractals. Typical examples include diagrams in quantum electrodynamics 

(QED) or quantum chromodynamics (QCD), which can be broken down into sub-diagrams 

replicating the whole. Emitted gluons in parton showers from high-energy collisions exhibit a 

branching geometry akin to fractal-like structures. 

A gallery of representative Feynman diagrams is illustrated in Fig. 1 below. 
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Fig. 1. Feynman diagrams containing vertices, lines and loops. 

 

4. Random walks (RW) on the Feigenbaum attractor 

By definition, a random walk (RW) consists of a sequence of stochastic steps, often used to 

model Brownian motion and diffusion processes. The probability of reaching a certain point is 

given by summing up all possible paths leading to that point. 

RW’s provide an intuitive foundation for understanding Path Integrals (PI) in statistical physics, 

quantum mechanics, and QFT. The PI approach in quantum theory extends the idea of summing 

over RW’s to the quantum domain, where paths interfere according to the phase iSe  rather than 

being weighted by classical probabilities. 

The couple of graphs shown below illustrate the plots of RW’s over the quadratic and cubic 

maps, displayed as “position” versus number of “stochastic steps”.  
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Fig. 2. below is the visualization of RW on the bifurcation diagram of the quadratic map. Here 

are the main features of this RW:  

a) The black points represent the bifurcation diagram, showing the steady-state behavior of x  as 

r  varies. 

b) The red curve traces the RW path in r - space. 

c) The blue points highlight the specific steps of RW. 
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Fig. 2. Visualization of random walks on the bifurcation diagram 

The walk “wanders” through periodic regions (where the behavior is stable) and chaotic regions 

(where small changes in r  cause large variations in x ). A similar mixture of regular and chaotic 

phase space orbits shows up in the approach to Hamiltonian chaos of nonintegrable dynamical 

systems.  

Following [1], the border between Cantor Dust/Dark Matter condensate and the 3 neutrino 

condensates of the Standard Model is a marker of fully developed chaos, with few or no traces of 

periodic behavior.  

 

5. Field-Theoretic Account of the Feigenbaum Attractor 

The PI approach to the Feigenbaum attractor may be built upon the analogy between summation 

over paths in QFT and summation over histories of chaotic maps in classical chaos theory. The 

basis for this analogy is that the PI approach to chaos describes classical fluctuations in chaotic 

dynamics, echoing the way quantum fluctuations are accounted for in the PI integrals of QFT. 

Note that the underlying principle at work here is that all nearly nonlinear dynamical systems 

follow a universal route to chaos, regardless of their format and initial conditions [5 -26]. 

In line with these observations, the goal of this section is twofold, namely, 
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a) to cast the scaling behavior of low-dimensional maps near the Feigenbaum attractor in 

terms of an effective action, 

 b) to analyze the corresponding renormalization group (RG) equations. 

To this end, we introduce an auxiliary field ( , )x   denoting perturbations around a trajectory 

x  located near a fixed point,   

 ( ) nn x x    (3) 

The evolution equation may be then approximated as 

 1 ( )nn g      (4) 

where the so-called Feigenbaum-Cvitanovic function ( )g x  satisfies the scaling equation 

(Appendix B) 

 ( ) ( ( ))g x g g x   (5) 

Here,   is the second Feigenbaum universal constant ( 2.5029   for the quadratic map and 

' 2.3378   for the cubic map). Per Appendix B, the main point here is that, under repeated 

renormalization operations consisting of iteration and rescaling, various unimodal maps 

converge to the same function - denoted as ( )g x  - regardless of the form taken by the original 

function.    

We next introduce a Lagrangian density in the continuous time limit of (4) 

 21
( ) ( )

2 effL V     (6) 

in which the effective potential follows from the Feigenbaum renormalization flow and is given 

by  

 2 3 43 41
( ) ....

2 3! 4!eff

g g
V         (quadratic map) (7a) 

 2 3 53 51
( ) ....

2 3! 5!eff

g g
V        (cubic map) (7b) 
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Here, by (11),   is related to the first Feigenbaum constant   ( 4.669   for the quadratic 

map and ' 8.721   for the cubic map), and 3,4,5g  are interaction coefficients. The 

corresponding Euclidean action governing the fluctuations about the Feigenbaum fixed point is 

 21
[ ] [ ( ) ( )]

2 effS d dx V       (8) 

Again, by analogy with QFT, the probability amplitude of the transition between two 

perturbation states i  and f  over a time interval ifT     is given by the PI, 

 exp( [ ])Z d S    (9) 

To perform an RG analysis in the Wilsonian sense, we first integrate out the fast modes and 

rescale the remaining degrees of freedom. The resulting RG equations define the scaling 

behavior of fluctuations near the Feigenbaum attractor and assume the form, 

Quadratic map: 

 2
3 42 ( )

d
g O g

dl
      (10a) 

 3
53 4 3(1 ) ( )

dg
g g g O g

dl
      (10b) 

 4
542(1 ) ( )

dg
g O g

dl
    (10c) 

Here, the Feigenbaum constant   is the rate of flow for   at the Feigenbaum fixed point 

 

FP

d
dl
   (11) 

Cubic map: 

 2
52 '

d
g

dl
     (12a) 

 3
53 3(1 ') '

dg
g g g

dl
     (12b) 
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 5
52(1 ')

dg
g

dl
   (12c) 

Fig. 3 shows the RG flow for the Feigenbaum attractor of the quadratic map. The quadratic 

coupling ( )l  grows under the RG flow, indicating that the system drifts away from criticality. 

The cubic and quartic couplings 3( )g l  and 4( )g l  follow a decay trend, characteristic of 

irrelevant couplings in RG theory.  

Unlike the quadratic map, analysis shows that there is a nontrivial fixed point of the RG flow for 

the cubic map given by 

 

2
5'

2

g



 ;  53

0g g    (13) 

As the RG flow for the cubic map converges to (13), the parameter   tends to stabilize, which 

indicates the transition to self-similarity characteristic for critical behavior. As a result, the cubic 

map follows a different universality scaling from the quadratic map. This result is consistent with 

the observation that cubic maps often exhibit richer dynamics, including period-doubling 

cascades, chaotic attractors, and multi-stability (coexistence of multiple attractors). These 

findings point out that the bifurcation diagram of the cubic map covered in [1] is likely to unveil 

many surprising details on the underlying physics of Feynman diagrams.  

 

Fig. 3. RG plot of coupling parameters for the quadratic map 
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6. Summary 

Our exploration provides a baseline for studying the link between the Feigenbaum path to chaos 

and renormalization in nonlinear dynamics, on the one hand, and Feynman diagrams, on the 

other. We believe that, in connecting QFT techniques with nonlinear maps, this modest 

contribution sheds unforeseen light on the common mathematical foundation of statistical 

physics and dynamical systems. 

APPENDIX A: Feigenbaum Attractor of Low-Dimensional Unimodal Maps 

The Feigenbaum attractor reflects the onset of chaos after an infinite sequence of period-doubling 

bifurcations. It is a strange attractor with a non-integer fractal dimension. It exhibits self-similarity and 

universal properties across different chaotic systems. At the Feigenbaum attractor, the system exhibits an 

aperiodic but nested structure of points, where zooming in shows a self-repeating pattern. 

APPENDIX B: Feigenbaum Fixed Point and the Renormalization Approach to Period Doubling 

Bifurcations 

Consider a family of one-parameter unimodal maps (1) or (2). As  parameters 1, 2
r  ramp up, the system 

undergoes bifurcations in which stable periodic points double their period ( 2 , 1,2,3...k k  ), eventually 

leading to fully developed chaos at r . The renormalization approach to period-doubling bifurcations 

considers a transformation R  whose action on the families of maps (1) or (2) is described by 

 [ ]( ) ( ( ))R f x f f x   (B1) 

with   a is the second Feigenbaum constant. The fixed-point function represents the limit of (B1) and is 

defined as   

 ( ) ( ( ))g x g g x     (B2) 

The meaning of (B2) is that, under repeated application of the renormalization operator R , various 

unimodal functions converge to the same outcome ( )g x , regardless of the original form of the function.  
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