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Abstract
Connections between quantum entanglement and complexity are examined in the context of the
vacuum and black holes. The growth in quantum complexity is argued to approximate the distribution
of prime number according to the Riemann ζ-function.
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1 Spacetime from squeezed vacuum states
Spacetime from Jacobson [1]to Van Raamsdonk [2] is argued to be built from quantum states and en-
tanglement. Similarly the singularity of a black hole is a region where spacetime appears to end and
geodesics end. It is then reasonable consider the possibility that spacetime may emerge from quantum
states or fields that have no explicit reference to some embedding spacetime. The geometry of quantum
entanglement itself may be fabric that constructs spacetime.

Entanglement between two EPR pairs may be conserved in spacetime. This could even be with a
black hole. Alice may take her EPR pair into the black hole and may be able to receive a teleportation
of states from Bob outside. The converse is not so apparent, for Bob loses sight of Alice and her EPR
pair due to red-shift. Bob only finds an entanglement with the black hole. A volume in space has a
boundary with constant area, which the Weyl curvature may distend. In phase space this is a measure
of the distention of phase space volume of a system. If entanglement is conserved, then this phase space
volume is conserved. This is a squeezed state.

Mutual information of two states X and Y is I(X;Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X)[3].
It is symmetric with I(X;Y ) = I(Y ;X), which is similar to a metric. If we assume mutual information
of a closed quantum system is conserved under differentiation with proper time dI(X;Y )

ds = 0, formally
the same as dg(U,V )

ds = ∇g(U, V )dUds = 0, the constancy of the metric ∇g(U, V ) = 0 is equal to the
constancy of mutual information. Mutual information of a quantum system is a measure of entanglement,
and the constancy of quantum entanglements is equivalent to the covariant constancy of the metric.

Mutual information may be expressed as I(X;Y ) = H(X) + H(Y ) − H(X,Y ) for the joint entropy
H(X,Y ) = H(X|Y ) + H(Y |X). This then means I(X;Y ) = H(X,Y ) − H(X|Y ) − H(Y |X)[3]. We
can see this with respect to the Shannon-von Neumann information theory S = −

∑
n pn log(pn) or

S = − Tr[ρ log(ρ)]. The trace operation Trx here is a summation of x ∈ X so mutual information is

I(X;Y ) = TrxTry[p(x, y) log
p(x, y)

p(x)p(y)

= TrxTry

[
p(x, y) log

p(x, y)

p(x)

]
− TrxTry [p(x, y) log p(y)] ,

where we may continue to see Shannon information for joint probabilities as

I(X;Y ) = TrxTry [p(x, y) log p(x, y)] − TrxTry [p(x, y)log p(x)]
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+ TrxTry [p(x, y)(log p(x) + log p(y))] ,

Which is H(X,Y ) − H(X) − H(Y ). Ignoring this last step mutual information is then

Trx [p(x)H(Y |x)] − Try [p(y) log p(y)] = −H(Y |X) + H(Y ).

Mutual information emerges from relative entropy.

The mutual information between two states X and Y is

S(X;Y ) = S(ρXY ||ρX ⊗ ρY ) = Tr[ρXY logρXY ] − Tr[ρX ⊗ ρY logρX ⊗ ρY ],

which by virtual of the logarithm logρXY ≃ logρX ⊗ ρY the mutual information is approximately

S(X;Y ) ≃ Tr[(ρXY − ρX ⊗ ρY )logρXY ] ≥
1

2
|ρXY − ρX ⊗ ρY |2.

≥ 1

2

(⟨XY ⟩ − ⟨X⟩⟨Y ⟩)2

(⟨X⟩⟨Y ⟩)2
,

which is the Fubini-Study metric [4] and the uncertainty principle. The mutual information is the metric
information content of quantum entanglement.

Entanglement of states is a tensor product HX ⊗ HY of dimensions NX and NY . We have local
unitary transformation UX ∈ SU(NX) and UY ∈ SU(NY ) so ψ′ = UX ⊗ UY ψ. We have that
SU(NX)×SU(NY ), with dimension N2

X + N2
Y − 2 is a subset of SU(NX + NY ) with dimension (NX +

NY )
2 − 1 and SU(NXNY ) with dimension (NXNY )

2 − 1. Given N ≤ min(NX , NY ), the pure state
in HX ⊗HY is expressed as

|ψ⟩ =

N∑
i=1

√
χi|αi⟩ ⊗ |βi⟩,

where {αi} and {βi} are elements of HA and HB respectively. A pure state can be represented as the
double sum over a related bases on NX and NY .

|ψ⟩ =

N1∑
i=1

N2∑
j=1

Cij |αi⟩ ⊗ |βj⟩.

The two representations are Schmidt decompositions of a state[5].

The general Schmidt decomposition [6] with a Schmidt vector σ⃗ = (01, . . . 0m0 , v11 , v
2
1 , . . . , v

m1
1 , v12 , . . . , v

m2
2 , . . .

, v1n, . . . , v
mn
n ) such that the base and fibre of a bundle are respectively

U(N)

U(m0)
× U(m1)× . . . U(mn)

and
U(N)

U(m0)× U(1)
= CPm0 .

The base manifold is a flag manifold F (m0,m1, . . . ,mn,C) and the local orbit space is defined by the
product so Oloc = F (m0,m1, . . . ,mn,C)× CPm0 .

Now consider the flag manifold F1,2(C4) of interest over C4. This is a total space for 4-fold entangle-
ment. This is the sort of entanglement considered in [7] In this entanglement we have the possibility of
2 sets of 2 states entangled with each other, or 1 state entangled with the other 3. We then consider the
flag manifold F1,2(C4). This then leads to

F1,2(C4) =
U(4)

U(3)× U(1)
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≃ U(4)

U(3)× U(1)
× U(3)

U(2)
≃ CP 3 × C2 × U(1).

Since F1(C4) = C3 and F2(C4) = G2(C4), where CP 3 and G2(C4) embed into F1,2(C4) as the double
fibration of twister geometry,[8]

G2(C4) ←ϕ F1,2(C4) χ → C3.

For U(1) the orbit given by ds = r U−1dU gives the “volume” of the circle V ol[U(1)] = 2π
√
r. Now

set r = 1
2 , the volume of U(N) the follows as

V ol[U(N)] = V ol

(
U(N)

U(1)N

)
V ol[U(1)]N = 2N/2 π

N(N+1)/2∏N
k=1 Γ(k)

The volume of the Grassmannian G2(C4) is then π4

72 ≃ 4.059 and the volume of CP 3 is π3

6 ≃ 5.177.
This double fibration of twistor theory is a correspondence between lines in 3-dimensional space with
2-dimensional subspaces in 4-dimensions. This is an embedding of Gr2(C4) into projectivized wedge
2-products P(Λ2C4) of 5 real dimensions[9].

The lines of CP 3 are points in the 5-dimensional Klein quadric that is the projectivized P(Λ2C4) of
5 real dimensions. This line, Plucker coordinates, is determined by a span of two vectors pi, pj i < j,
so that fij = [pi, pj ] and that satisfy the quadratic relationship,

f12f34 − f13f24 + f14f23 = 0.

The 6 dimensional P(Λ2C4) define the set of 2-chains that above is for pi → pi + Ai means the
Lagrangian term F ab ∗ Fab = 0. This means there are no relevant edge states on the boundary of this
6 dimensional space. This is in an Euclideanized form equivalent as well to SU(4) ≃ SO(6), where this
loss of edge or boundary states means the relevant space of interest is SO(4, 2)/SO(4, 1) which is the
anti-de Sitter spacetime. The AdS4 has correspondences with black hole physics, and is for this discussion
important for AdS ∼ BH correspondence.

These are Schmidt states, and the entanglement entropy of the is determined by the equivalency
of lines in C4 and points in the quadric and further the planes of C4 are spacetime[8]. These are the
Schmidt states with the entanglement entropy determined by the von Neumann entropy of the reduce
states, equivalently the Shannon information of the Schmidt states

S(ρX) = −
N∑

n=1

ρXi lnρXi,

with S(ρX) ≤ k ln(N). In this manner for the reduced state with 2 qubits the entropy is ≃ 3.366 ×
10−23J/K. Given this occurs at the Planck temperature Tp = 1.417× 1032K gives E = ST = 4.769×
109J = 1.972mp or about 2 Planck units of mass-energy. For a quNit with N units or N qubits entropy is
larger. A solar mass black hole has S = 4×1077k. However, if this is due to an entanglement between two
states with a large N superposition of states, say a Schwarzschild black hole that is a perfectly entangled
wormhole in a Penrose diagram, the entropy ≃ k ln(N) is only S ≃ 178k. In this case the black hole
would not only be completely entangled as a non-traversable wormhole, but analogous to two entangled
hydrogen atoms with a large set of superposed Rydberg states. The entropy for an astrophysical black
hole is largely due to the inability of an external observer to localize quantum bits and is large and
bounded by the Bekenstein bound S ≤ A/4ℓ2p, ℓp = =

√
G~/c3.

The emergence of spacetime from a Hilbert space of states requires an additional component. Clearly,
the entropy is far larger than expected from the entanglement of superposed Rydberg-like states. For
black hole physics this low entropy would correspond to a high temperature. This black hole would
explode catastrophically.
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There is the matter of quantum complexity. Two entangled black holes contain a shared interior that
grows. The volume of this interior expands enormously, and it corresponds to the increase in quantum
complexity. Given N qubit states the maximal entropy is N ln2, and for n quNit state with N quantum
levels this is Nk ln(n). However, maximal complexity is C = eS , which corresponds to the time of
maximal complexity[10]. The recurrence time is the exponential of that. A black hole interior expands
according to an increase in quantum complexity. This quantum complexity is from the perspective on
an exterior observer a mixing of quantum states. The corresponding exponentiation of S = 178k is
then 2 × 1077 which in this numerical correspondence means the Bekenstein bound for exterior entropy
is determined by the interior complexity. Then entropy is in effect the logarithm of complexity, where
complexity may be enormously large. The time for a black hole to achieve maximum entropy is ≃ log(N).
For a solar mass black hole that is ≃ 10−6sec. A black hole placed in an AdS4 spacetime at equilibrium
would be “eternal,” and its quantum recurrence time would be on the order of 101010 years. Of course, a
black hole in the observable universe will quantum evaporate long before this time.

Quantum complexity is vast, yet this does not contribute in a summation to the number of states or
the energy of the black hole. Quantum complexity in fact can double with the introduction of a single
qubit. There are then a vast number of state configurations that must have the same eigenvalues, say
with the Hamiltonian, in a huge degeneracy. This would hold for the vacuum state. Quantum complexity
obeys the logistic equation, which has a sigmoid growth curve. It has analogues to the saturation of a
population by a pandemic. The growth of complexity is a logistic curve that approximates the log integral
function Li(x) =

∫ x

0
dx/ln(x) for x >> 1. An explicit calculation may be found here [11]. Because li(x)

approximates the distribution of primes numbers this leads to the prospect that the Riemann ζ-function
is a representation of the supersymmetric Hamiltonian that annuls the vacuum state.

This will fit into conformal supersymmetry. The dilatation operator D = x d
dx can be the generator

(derivation) of an operator such as
∑

n(−1)n+1neD or

O =

∞∑
n=1

(−1)n+1eln(x) D

where the inverse operator must then be

O−1 =

∞∑
n=1

(−1)n+1

n
eln(x) D

It is not hard to see this operator acts on x−s to give Ox−s = (1 − 21−s)ζ(s)x−s and its inverse
O−1x−s = (1 − 2s)ζ(1− s)x−s. Further, the lowering and raising operators can be shown to be

aω = |x|−iω/2O|x|−iω/2, a†ω = |x|iω/2O−1|x|iω/2,

where upon the supersymmetric Hamiltonians H− = a†ωaω and H+ = aωa
†
ω or

H− = |x|iω/2O†O|x|−iω/2

H+ = |x|−iω/2OO†|x|iω/2.

The commutator of these is zero, which is evident from the fact they are constructed from the same
dilatation operator. A matrix of these on the vacuum state is zero, in line with supersymmetric annulment
of the vacuum state[12]. In this way quantum complexity is a form of conformal supersymmetry, where
the vast number of vacuum state configurations are annulled by a supersymmetry Hamiltonian with a
Riemann ζ-function representation.

H+ and H− define a form of px and xp according to their difference and summation. The commutator
of these is zero, since they are constructed from the dilatation operator. In this way quantum complexity
is a form of conformal supersymmetry, where the vast number of vacuum state configurations are annulled
by a supersymmetry Hamiltonian with a Riemann ζ-function representation.
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