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Exploration

The TGD View of the Recently Discovered Gravitational Hum as
Gravitational Diffraction

Matti Pitkänen 1

Abstract

Scientists from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav)
have now officially made the first detections of the gravitational wave background. This gravitational
hum was not detected by Earth bound instruments. Rather, they make themselves manifest as
periodic changes of the spinning rates of pulsars with the frequencies of the gravitational waves
involved. The periods are of order year. In the LIGO experiment the periods are measured as
fractions of a second. The strength of gravitational hum is unexpectedly large. The basic insight of
the TGD view is that diffraction produces very high intensities but only in preferred directions and
that in diffraction the amplitude of the scattered field is proportional to the square N2 of the number
N of scatterers rather than N . The identification of dark matter as phases of the ordinary matter with
an arbitrarily large value of Planck constant suggests the existence of tessellations of the hyperbolic 3-
space identifiable as light-cone proper time hyperboloid of Minkowski space. Gravitational diffraction
could occur in astrophysical scales at these tessellations.

1 Introduction
Year 2022 initiated a revolution in cosmology when James Webb telescope started to function [4][?]. This
is not the only big step of progress. The latest breakthrough related to the detection of gravitational hum
was announced June 29 2023 [1] (rb.gy/e226v: see also rb.gy/vcm28 and rb.gy/i4msf).

1.1 The discovery
Scientists from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) have
now officially made the first detections of the gravitational wave background. This gravitational hum was
not detected by Earth bound instruments. Rather, they make themselves manifest as periodic changes
of the spinning rates of pulsars with the frequencies of the gravitational waves involved. The periods are
of order year. In the LIGO experiment the periods are measured as fractions of a second.

The wavelength of the oscillations makes itself visible as correlations between the variations of the
spinning rates for pulsars having relative distances measured using a light year as a unit. The wavelength
of the oscillations is measured in light years. Where could this length scale come from? What might make
bells ringing is that the star nearest to the Sun is at a distance of 4 light years and the typical distance
between stars is 5 light years.

The unexpectedly large amplitude of the oscillations motivates the hypothesis that pairs of galactic
supermassive blackholes or interacting groups of them could generate the gravitational hum. There are
candidates for these pairs but no established pair. The group hypothesis seems to work better.

1.2 TGD based model for the gravitational hum
The strength of gravitational hum is unexpectedly large. The basic insight of the TGD view is that
diffraction produces very high intensities but only in preferred directions and that in diffraction the
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amplitude of the scattered field is proportional to the square N2 of the number N of scatterers rather
than N .

TGD indeed predicts the possibility of lattice-like structures as tessellations of the hyperbolic space
identifiable as light-cone proper time= constant surface of M4. The 4 regular honeycombs corresponding
to cubic, icosahedral, and dodecahedral tessellations and one honeycomb, icosa-tetrahedral honeycomb,
involving several different Platonic solids tetrahedra, octahedra and icosahedral with triangular faces
serve as candidates for the tessellation in question. The icosa-tetrahedral tessellation is unique and I have
proposed that it might define a universal realization of the genetic code so that genetic code would be
much more than a biochemical accident. The details of this realization are discussed in [6, 5]. Which of
these tessellations is involved, remains an open question.

2 TGD explanation in terms of astrophysical gravitational quan-
tum coherence and diffraction in hyperbolic tessellation

TGD suggests a radically different hypothesis based on TGD view of gravitational quantum coherence
an diffraction in a hyperbolic tessellation.

1. TGD predicts quantum gravitational coherence in astrophysical scales characterized by gravitational
Planck constants hgr = GMm/β0 characterizing big mass M and small mass m. β0 = v0/c < 1 ia
velocity parameter. The Equivalence Principle is realized as the independence of the gravitational
Compton length Λgr = GM/β0 = rs/2β0 on mass m.

(a) For the Sun with β0 ≃ 2−11 gravitational Λgr is 1/2 of Earth radius. According to the TGD
proposal, which explains the Cambrian explosion in terms of rapid increase of the Earth radius
by factor 2, this scale is the radius of Earth before the explosion [2].

(b) For Earth with β0 = 1, the scale is .45 cm and the size scale of a snowflake, which is a zoomed
version of the unit cell of the ice crystal: a fact which still remains a mystery.

(c) For the galactic black hole with β0 = 1, Λgr is about 1.2× 107km = 1.2× 10−2 light seconds
and corresponds to a frequency of about 100 Hz, the upper bound of EEG frequencies by the
way (which might put bells ringing!). For β0 = 1, Λgr happens to correspond to the radius of
the lowest Bohr orbit for Sun Λgr in the Bohr orbit model for planetary orbit (another bell
ringing!) and defines a lower bound for the quantum coherence scale.

(d) For the Milky Way with a mass of 2× 1012MSun, Λgr is about 2× 104 second and still much
shorter than a few years’ scale.

2. Where does the wavelength of order of distance between stars emerge? TGD strongly suggests
that the tessellations (lattices) associated with hyperbolic 3-spaces define light-cone proper time a=
constant surface play a key role in all scales, in particular in biology.
There could exist a fractal hierarchy of tessellations (rb.gy/yqd11) formed by astrophysical objects
of various mass scales. Could the stars with average distance of 5 light years form tessellations of
this kind analogous to lattices in a condensed matter system. The wavelength for the diffracted
gravitational waves in cubic tessellation would have the upper bound 2d, d the lattice constant,
which would be now about 5 light years.

3. There is empirical evidence for these tessellations. So called cosmic fingers, discovered by Halton
Arp [7] [3], correspond to astrophysical objects appearing at single light of sight (first mystery) and
having redshift coming as multiples of a basic redshift (second mystery). This could serve as a
direct signature of the hyperbolic counterpart for a line of atoms located along a lattice. Redshift
is proportional to distance and also to the recession velocity, which would therefore be quantized in
the observed manner.
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4. What kind of tessellations could be involved? There is an infinite number of tessellations for H3

but only 4 regular uniform honeycombs. For two of them the unit cell is dodecahedron, for the
remaining two it is icosahedron (I) or cube (C). Note that in Euclidian 3-space one has just one
regular honeycomb consisting of cubes.
There are also more general uniform honeycombs involving several cell types. There is a unique
”multicellular” honeycomb for which all cells are Platonic solids: for other tessellations all cells
are not Platonic solids (rb.gy/t3c88) . This is icosatetrahedral (or more officially, tetrahedral-
icosatetrahedral) honeycomb for which the cells are tetrahedrons, octahedrons, and icosahedrons.
All faces are triangles and I have proposed a universal realization of genetic code in which genetic
codons correspond to the triangular faces of icosahedra and tetrahedra.

The key prediction is gravitational diffraction in this cosmic lattice.

1. In lattice diffraction, the diffracted amplitude concentrates in specific directions corresponding to
the reciprocal lattice. Something analogous should happen for tessellations in hyperbolic 3-space.
Already the concentration to beams would mean an amplification effect (note that the lowest or-
der prediction for the intensity of the radiation does not depend on the value of effective Planck
constant).
Furthermore, by quantum coherence the scattered amplitude is proportional to N2 rather than
N , where N is the number of atoms in the lattice, now stars in the tessellation. Could these two
amplification effects explain why the observed effect is so much larger than expected? Professionals
could easily find whether this idea fails at the quantitative level.
The TGD view suggests that the dark gravitational radiation propagates along the monopole flux
tubes connecting stars.

2. In the ordinary diffraction from a cubic lattice in Euclidean space E3 , the condition of constructive
interference for the two rays scattered from to neighboring points of the cubic lattice states, requires
that the difference of lengths for the paths travelled is a multiple of the wavelength of the incoming
radiation. This gives the Bragg condition: sin(θ) = nλ/2d, where θ is the glance angle defined as
the angle of incoming ray with respect to the normal direction of the lattice plane. The condition
gives λ < 2d/n and implies λ < 2d for n = 1. Therefore the diffraction occurs only for frequency
ω ≥ nωn, ωn > c/2d.
In the case of gravitational radiation, this would give for a cubic lattice λ < 2d/n, d ∼ 5 light years,
which conforms with the scale of a few years for the periods. The lower bound for the period T
would be about Tmin = 10 years. The condition that the scattered beams connect lattice points,
gives an additional quantization condition to the glance angle θ. Most naturally it would correspond
to a line connecting lattice points.

2.1 About honeycombs in hyperbolic 3-space
This section, written in 2023, represents some new understanding related to the tessellations of H3 known
as honeycombs.

2.1.1 Some preliminaries

Some preliminaries are needed in order to understand Wikipedia articles related to tessellations in general.

1. Schläfli symbol {p, r} (rb.gy/j36tg) tells that the possibly existing Platonic solid {p, r} has r p-
polygons as faces meeting at each vertex. For instance, icosahedron {3, 5} has 5 triangles as faces
meeting at each vertex.
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Schläfli symbol generalizes to higher dimensions. The analog of Platonic solid {p, r, q} possibly in 4-
dimensions and assignable to 3-sphere has q 3-faces which are Platonic solids {p, r}. This description
is purely combinatorial and is recursive. For instance, one can start from 3-D dimensional Platonic
solid {p, q} with 3-D objects in dimension 4 by replacing p with p, r. One can also project this
object to dimension 3. In this manner one obtains a projection of 4-cube (tesseract) {4, 3, 3} for
which 3 cubes {4, 3} meet at each vertex (24 = 16 of them) and which has 8 3-cubes as faces as a
3-D object.
In the case of hyperbolic tessellations also strange looking Schläfli symbols {(p, q, r, s)} are en-
countered: icosa-tetrahedral tessellation involving only Platonic solids has symbol {(3, 3, 5, 3)}. My
understanding is that this object corresponds to {3, 3, 5, 3} as an analogue of Platonic solid associate
with 4-sphere in 5-D Euclidian space and that the fundamental region of this tessellation in H3 is
analogous to a 3-D projection of this object. At a given vertex 3 objects {3, 3, 5} meet. For these
objects 5 tetrahedrons meet at a given vertex.

2. Vertex figure is a further central notion. It represents a view of the fundamental region of tessellation
from a given vertex. The vertices of the figure are connected to this vertex. It does not represent the
entire fundamental region. For instance, for a cube (octahedron) it contains only the 3 (4) nearest
vertices. For icosa-tetrahedral tessellation the vertex figure is icosidodecahedron (rb.gy/3u4pq).
The interpretation of the vertex symbol of the hyperbolic icosa-tetrahedral honeycomb (htrb.gy/
3u4pq) is a considerable challenge.

3. One cannot avoid Coxeter groups and Coxeter symbols (rb.gy/48qhg) in the context of tessellations.
They code the structure of the symmetry group of say Platonic solid (tessellation of S2). This
symmetry group is generated by reflections with respect to some set of lines, usually going through
origin. For regular polygons and Platonic solids is its discrete subgroup of rotation group.
The Coxeter group is characterized by the number of reflection hyperplanes Hi and the reflections
satisfying r2i = 1. The products rij = rirj define cyclic subgroups of order cij satisfying r

cij
ij = 1.

Coxeter group is characterized by a diagram in which vertices are labelled by i. The orders of the
cyclic subgroups satisfy cij ≥ 3. For cij the generators ri and rij commute. For cij = 2 the vertices
are not connected, for cij = 3 there is a line and for cij > 3 the number cij is assigned with the
line. For instance, hyperbolic tessellations are characterized by 4 reflection hyperplanes.
For instance, for p-polygon the Coxeter group has 2 generators and the cyclic group has order p.
For Platonic solids the Coxter group has 3 generators and the orders of cyclic subgroups are 3, 4,
or 5. For icosa-tetrahedral tessellation the order is 4.

2.1.2 The most interesting honeycombs in hyperbolic 3-space

H3 allows an infinite number of tessellations. There are 9 types of honeycombs. This makes 76 uniform
hyperbolic honeycombs involving only a single polyhedron (hrb.gy/rs9h5).

4 of these honeycomes are regular, which means that they have identical regular faces (Platonic solids)
and the same numbers of faces around vertices. The following list gives the regular uniform honeycombs
and their Schläfli symbols {p, q, r} telling that each edge has around it regular polygon {p, q} for which
each vertex is surrounded by q faces with p vertices.

1. H1: 2 regular forms with Schläfli symbol {5,3,4} (dodecahedron) and {4,3,5} (cube).

2. H2: 1 regular form with Schläfli symbol {3,5,3}(icosahedron)

3. H5: 1 regular form with Schläfli symbol {5,3,5} (dodecahedron).

There is a large number of uniform honeycombs involving several cell types. There exists however
a ”multicellular” honeycomb, which is completely unique in the sense that for it all cells are Platonic
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solids. This icosa-tetrahedral (or more officially, tetrahedral-icosahedral) honeycomb has tetrahedrons,
octahedrons, and icosahedrons as its cells. All faces are triangles. The icosa-tetrahedral honeycomb is
of special interest since it might make possible the proposed icosa-tetrahedral realization of the genetic
code (rb.gy/h8xx0).

From the Wikipedia article about icosa-tetrahedral honeycomb (htrb.gy/3u4pq) one learns the fol-
lowing.

1. The Schläfli symbol of icosa-tetrahedral honeycomb is {(3, 3, 5, 3)}. This combinatorial symbol
allows several geometric representations. The inner brackets would refer to the interpretation as
an analogue of the Platonic solid assignable to a 4-sphere of Euclidian 5-space. At each vertex 3
objects of type {3, 3, 5} would meet. At the vertex of {(3, 3, 5)} in turn 5 tetrahedrons meet.

2. Icosa-tetrahedral honeycomb involves tetrahedron {(3, 3}, octahedron {(3, 4)}, an icosahedron {(3, 5)}
as cells. That there are no other honeycombs involving several Platonic solids and only them as cells
makes this particular honeycomb especially interesting. Octahedron with Schläfli symbol {3, 4} can
be also regarded as a rectified tetrahedron havig Schläfli symbol r{3, 3}.

3. The vertex figure of icosa-tetrahedral honeycomb (htrb.gy/3u4pq), representing the vertices a
lines connecting them is icosidodecahedron (rb.gy/q5w62), which is a ”fusion” of icosahedron and
dodecahedron having 30 vertices with 2 pentagons and 2 triangles meeting at each, and 60 identical
edges, each separating a triangle from pentagon. From a given vertex VF=60 vertices connected to
this vertex by an edge can be seen. In the case of cube, octahedron, and dodecahedron the total
number of vertices in the polyhedron is 2(VF+1). It is true also now, one would have 122 vertices
in the basic structural unit. The total number of vertices for the disjoint polyhedra is 6+4+12= 22
and since vertices are shared, the number of polyhedra in the basic unit must be rather large.

4. The numbers called ”cells by location” could correspond to numbers 30, 20, and 12 for octahedrons,
tetrahedrons and icosahedrons respectively inside the fundamental region of the tessellation defining
the honeycomb. That the number of icosahedrons is smallest, looks natural. These numbers are
quite large. The counts around each vertex are given by (3.3.3.3), (3.3.3), resp. (3.3.3.3) for
octahedra, tetrahedra, resp. icosahedra and tell the numbers of vertices of the faces meeting at a
given vertex.

5. What looks intriguing is that the numbers 30, 20, and 12 for octahedrons (O), tetrahedrons (T) and
icosahedrons (I) correspond to the numbers of vertices, faces, and edges for I. As if the fundamental
region would be obtained by taking an icosahedron and replacing its 30 vertices with O, its 20 faces
with T and its 12 edges with I, that is by using the rules vertex → octahedron; edge → I, face → T.
These 3-D objects would be fitted together along their triangular faces.
Do the statements about the geometry and homology of I translate to the statements about the
geometry and homology of the fundamental region? This would mean the following replacements:

(a) ”2 faces meet at edge” → ”2 T:s share face with an I”.
(b) ”5 faces meet at vertex” → ”5 T:s share face with an O”.
(c) ”Edge has 2 vertices as ends” → ”I shares a face with 2 different O:s”.
(d) ”Face has 3 vertices → ”T shares a face with 3 different O:s”.
(e) ”Face has three edges” → ”T has a common face with 3 I:s”.

2.1.3 An attempt to understand the hyperbolic honeycombs

The following general observations might help to gain some understanding of the honeycombs.
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1. The tessellations of E3 and H3 are in many respects analogous to Platonic solids as 2-D objects. The
non-compactness implies that there is an infinite number of cells for tessellations. It is important
to notice that the radial coordinate r for H3 corresponds very closely to the hyperbolic angle and
its values are quantized for the vertices of tessellation just like the values of spherical coordinates
are quantized for Platonic solids.
The tessellations for E3 are scale covariant. For a fixed radius of H3 characterized by Lorentz
invariance cosmic time this is not the case. One can however scale the value of a.

2. What distinguishes between regular tessellations in E3 and H3 is that the metric of H3 is non-
flat and has negative curvature. H3 is homogeneous space meaning that all points are metrically
equivalent (this is the counterpart of cosmological principle in cosmology). Since both spaces have
rotations as symmetries, this does not affect basic Platonic solids as 2-D structures assignable with
2-sphere if the edges are identified as geodesic lines of S2. Quite generally, isometries characterize
the tessellations, whose fundamental region corresponds to coset space of H3/Γ by a discrete group
of the Lorentz group acting as isometries of H3.

3. The modifications induced by the replacement E3 → H3 relate to the 3-D aspects of the tessellation.
This is because the metric is non-flat in the radial direction. The negative curvature implies that
the geodesic lines diverge. One can use a counterpart of the standard spherical coordinates and in
these coordinates the solid angles assignable to the vertices of Platonic solid are smaller than in
E3. Also the hyperbolic planes H2 emerging from edges of the tessellation of H3 diverge in normal
direction the angles involved are smaller.

It is useful to start from the description of the Platonic solids. They are characterized combinatorially
by integers and geometrically by various kinds of angles. Denote by p the number of vertices/edges of
the face and by q the number of faces meeting at vertex.

1. Important constraints come from the topology and combinatorics. Basic equations for the numbers
V ,E, and F for the number of vertices, edges and faces are purely topological equations V E+F = 2,
and the equation pF = 2E = qV . Manipulation of these equations gives 1/r + 1/p = 1/2 + 1/E
implying 1/r + 1/p > 1/2. Since p and q must be at least 3, the only possibilities for {p, q} are
{3, 3}, {4, 3}, {3, 4}, {5, 3}, and {3, 5}.

2. The angular positions of the vertices at S2 are basic angle variables. In H3 hyperbolic angle
assignable to the radial coordinate is an additional variable of this kind analogous to the position
of the unit cell in the E3 tessellation. The cosmological interpretation is in terms of redshift.

3. There is the Euclidian angle ϕ associated with the vertex of the face given by π/p. Here there is no
difference between E3 and H3.

4. The angle deficit δ associated with the faces meeting at a given vertex due to the fact that the
faces are not in plane in which case the total angle would be 2π. δ is largest for tetrahedron with
3 faces meeting at vertex and therefore with the sharpest vertex and smallest for icosahedron with
5 triangles meeting at vertex. This notion is essentially 3-dimensional, being defined using radial
geodesics, so that the δ is not the same in H3. In H3 δ is expected to be larger than in E3.

5. There is also the dihedral angle θ associated with the faces as planes of E3 meeting at the edges
of the Platonic solid. θ is smallest for a tetrahedron with 4 edges and largest for a dodecahedron
with 20 edges so that the dodecahedron is not far from the flat plane and this angle is not far from
π. The H3 counterpart of θ is associated faces identified as hyperbolic planes H2 and is therefore
different.
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6. There is also the vertex solid angle Ω associated with each vertex of the Platonic solid {p, q} given
by Ω = qθ − (q − 2)π. For tessellations in E3 the sum of these angles is 4π. In H3 its Euclidian
counterpart is larger than 4π.

7. The face solid angle is the solid angle associated with the face when seen from the center of the
Platonic solid. The sum of the face solid angles is 4π. For Platonic solid with n vertices, one has
Ω = 4π/n. The divergence of the geodesics of H3 implies that this angle is smaller in H3: there is
more volume in H3 than in E3.

E3 allows only single regular tessellation having cube as a unit cell. H3 allows cubic and icosahedral
tessellations plus two tessellations having a dodecahedron as a unit cell. Why does E3 not allow icosa-
hedral and dodecahedral tessellations and how the curvature of H3 makes them possible? Why is the
purely Platonic tetra-icosahedral tessellation possible in H3?

The first guess is that these tessellations are almost but not quite possible in E3 by looking at the
Euclidian constraints on various angles. In particular, the sum of dihedral angles θ between faces should
be 2π in E3, the sum of the vertex solid angles Ω at the vertex should be 4π. Note that the scaling of
the radial coordinate r decreases the dihedral angles θ and solid angles Ω. This flexibility is expected
to make possible so many tessellations and honeycombs in H3. The larger the deviation of the almost
allowed tessellation, the larger the size of the fundamental region for fixed a.

Consider now the constraints on the basic parameters of the Platonic solids (rb.gy/1cuav) in E3

while keeping their H3 counterparts in mind.

1. The values of didedral angle for tetrahedron, cube, octahedron, dodecahedron, and icosahedron are

[θ(T ), θ(C), θ(O), θ(D), θ(I)] ≈ [70.3◦, 90◦, 109.47◦, 116.57◦, 138.19◦] .

Note that r = 5 tetrahedra meeting at a single edge in E3 woul almost fill the space around the
edge. In E3 r = 4 cubes can meet at the edge. In H3 r should be larger. This is indeed the case
for the cubic honeycomb {4, 3, 5} having r = 5 .
For r = 3 icosahedrons the sum dihedral angles exceeds 2π which conforms with the that {3, 5, 3}
defines an icosahedral tessellation in H3.
For the r = 4 dodecahedra meeting at the edge the total dihedral angle is larger than 360◦: r = 4
is therefore a natural candidate in H3. There are indeed regular dodecahedral honeycombs with
Schläfli symbol {5, 3, r}, r = 4 and r = 5. Therefore it seems that the intuitive picture is correct.

2. The values of the vertex solid angle Ω for cube, dodecahedron, and icosahedron are given by the
formula Ω = qθ − (q − 2)π giving

[Ω(C),Ω(D),Ω(I)] ≈ [1.57080, 2.96174, 2.63455].

The sum of these angles should be 4π for a tessellation in E3. In E3 This is true only for 8 cubes
per vertex (Ω = π/2) so that the cubic honeycomb is the only Platonic honeycomb in E3. The
minimal number of cubes per vertex is 9 in H3. It is convenient to write the values of the vertex
solid angles for D and I as

[Ω(D),Ω(I)] = [0.108174, 0.209651]× 4π .

The number of D:s resp. I:s must be at least 10 resp. 5 for dodecahedral resp. icosahedral
honeycombs in H3.
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3. The basic geometric scales of the Platonic solids are circumradius R, surface area A and volume
V . The circumradius is given by R = (a/2) tan (π/q) tan (θ/2), where a denotes the edge length.
The surface area A of the Platonic solid {p, q} equals the area of face multiplied by the number F
of faces: A = (a/2)2Fpcot(π/p). The volume V of the Platonic time is F times the volume of the
pyramid whose height is the length a of the face: that is V = FaA/3.
Choosing a/2 as the length unit, the circumradii R , total face areas A an the volumes V of the
Platonic solids are given by

[R(T ), R(C), R(O), R(D), R(I)] = [
√
3/2,

√
3,
√
2,
√
3ϕ,

√
3− ϕϕ] ,

[A(T ), A(C), A(O), A(D), A(I)] = [4
√
3, 24, 2

√
3, 12

√
25 + 10

√
5, 20

√
3] ,

and

[V (T ), V (C), V (O), V (D), V (I)] ≈ [
√
8/3, 8,

√
128/3, 20ϕ3/(3− ϕ), 20ϕ2/3]

≈ [.942809, 8, 3.771236, 61.304952, 17.453560] .

What can one say about icosa-tetrahedral tessellation?

1. Consider first the dihedral angles θ. The values of dihedral angles associated T, O, and I in H3

are reduced from that in E3 so that their sum in E2 scene must be larger than 2π. Therefore at
least one of these cells must appear twice in H3. It could be T but also O can be considered. For
2T + O + I and T + 2O + I the sum would be 388.26◦ resp. 427.43◦ in E3. 2T + O + I resp.
T + 2O + Icould correspond to 4 cells ordered cyclically as ITOT resp. IOTO.

2. The values of the vertex solid angle Ω for tetrahedron, octahedron, and icosahedron are given by
[Ω(T ),Ω(O),Ω(I)] = [0.043870, 0.108174, 0.209651]4π If the numbers of T, O and I are [n(T ), n(O), n(I)],
one must have [n(T )Ω(T ),+n(O)Ω(O) + n(I)Ω(I) > 4π in H3.
If the number of the cells for the fundamental domain are really [N(T ), N(O), N(I)] = [30, 20, 12],
the first guess is that [n(T ), n(O), n(I)] ∝ [N(T ), N(O), N(I) is approximately true. For [n(T ), n(O), n(I)] =
[2, 3, 1]n(I), one obtains Ω = n(T )Ω(T ) + n(O)Ω(O) + n(I)Ω(I) = n(I) × .629 × 4π. This would
suggest n(I) = 2 giving [n(T ), n(O), n(I)] = [4, 6, 2]
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