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Abstract 

Relativistic Quantum Field Theory (QFT) develops divergences caused by perturbative 

corrections to Feynman diagrams. Dimensional Regularization (DR) is a technique that isolates 

divergences using analytic continuation to non-integer dimensions. In this introductory tutorial 

we argue that DR provides an alternative mechanism for mass generation in particle physics. 

This mechanism reconciles the Higgs model of electroweak symmetry breaking with the minimal 

fractal topology of spacetime above the Fermi scale. Mass predictions agree reasonably well with 

experimental data.  
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1. Introduction and Motivation  

Quantum Field Theory (QFT) lies at the foundation of the Standard Model for particle physics 

(SM) and is built in compliance with several postulates called consistency conditions. The 

remarkable success of SM stems from a unitary, local, renormalizable, gauge invariant and 

anomaly-free formulation of QFT. Notwithstanding this impressive achievement, many nagging 

puzzles confronting SM still exist and continue to defy explanation. Over the years, particle 

theory has seen a steady overflow of proposals targeting physics beyond the Standard Model 

(BSM). The bulk of these proposals postulate new objects (elementary fields or bound states) or 

hidden symmetries that allegedly break down somewhere above the SM scale. Unfortunately, the 

majority of BSM scenarios resolve some unsatisfactory aspects of the theory while introducing 

new unknowns. 

 

What mainstream research seems to be overlooking is that there are compelling arguments for 

the onset of non-integrability in the high-energy sector of field theory. This globally unstable 

setting prevents thermalization of quantum fluctuations and favors the onset of chaotic dynamics 

and fractal spacetime. The underlying principles of classical statistical physics and perturbative 
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QFT are likely to break down in this far-of-equilibrium regime. In particular, the ergodic 

theorem, the fluctuation-dissipation theorem, analyticity, unitarity, locality, finiteness in all 

orders of perturbation theory and renormalizability are either violated or lose their conventional 

meaning [4-13]. 

 

It was conjectured in [1-5] that the transition from perturbative QFT to chaotic dynamics occurs 

via a spacetime having arbitrarily small and scale-dependent deviations from four space 

dimensions, dubbed minimal fractal manifold (MFM). The expectation is that the MFM becomes 

increasingly relevant in far-from-equilibrium and nonintegrable conditions, prone to develop far 

above the Fermi scale. Based on these considerations, ref. [1] argues that the technique of 

Dimensional Regularization (DR) of QFT provides an alternative mechanism for mass 

generation in particle physics. This mechanism can potentially reconcile the Higgs model of 

electroweak symmetry breaking with the minimal fractal topology of spacetime above the Fermi 

scale. The goal of this work is to bring additional clarifications in support of [1].  

The paper is organized as follows: the necessary background is introduced in the second section. 

The next couple of sections cover momentum integration in non-integer dimensions and the 

emergence of non-trivial fixed points in Statistical Physics.  

 

2. Theoretical background 

Many Feynman diagrams of QFT are plagued by ultraviolet (UV) divergences – the integrals 

over loop momenta k  diverge for k   . The goal of the Regularization program is to 

suppress the UV regime of high momenta by decoupling the UV divergences from the 

observable physics at low energies ( UVE   ). By contrast, the Renormalization Group (RG) 

is based on a conceptually different program, which consists of absorbing the UV momenta 

through an iterative process of coarse graining and parameter rescaling. The endpoint of either 

Regularization or RG programs is an “effective field theory” whereby low energy physics (called 

infrared or IR physics) is completely shielded away from the effects produced by the UV regime. 

Tab. 1 of [1] summarizes the divergent parts of the 4-point and 2-point functions of scalar field 

theory following the Pauli-Villars (PV) and Dimensional Regularization (DR) methods, 

respectively.  
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Tab. 1: Pauli-Villars versus Dimensional Regularization of 
4  theory  

Side-by-side evaluation of entries in Tab. 1 hints that, in the limit UVm  , 

 
2 2( ) 4 ( ) ( ) 1UVd O m        (1) 

in which   is the running scale and UV the ultraviolet cutoff of the theory. 

The object of this report is to show that (1) is also supported by a couple of observations 

pertaining to both Regularization and RG programs, namely, 1) evaluation of Euclidean 

momentum integrals in non-integer dimensions, 2) existence of nontrivial fixed points in 

Statistical Physics.  

2.1) Momentum integration in non-integer dimensions 

Dimensional Regularization (DR) involves analytic continuation of the Euclidean momentum 

integrals to non-integer dimensions 4d  , which renders the integrals finite, followed by taking 

the limit 4d . Momentum integrals assume the form, 
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in which   is the reference energy scale at which the spherical shell in momentum space raddk  

has the same volume in d  dimensions as in 4 dimensions [14-15]. At large loop momenta 

1k  , the shell volume becomes smaller in 4d   dimensions than in 4 dimensions, namely, 
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in which the UV regulating factor (highlighted in red) drops the shell volume in 4d   

dimensions according to 

 
4 3 3

( )( () )rad rad rad radd
rad

k dk k dk
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    (4) 

Setting 4 2d    leads to 
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It is apparent that the UV regulating factor becomes arbitrarily small when, 
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from which one concludes that the UV cutoff scale in dimensional regularization is given by 

 
2 2 2( ) exp(1 )DR

UV       (7) 

Similar considerations lead to the following relationship between the UV cutoff scale of the DR 

and PV regularization methods, 

 
2 2exp( )

( ) ( )
4

DR PVE
UV UV



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in which E  represents the Euler-Mascheroni constant.  

For all practical purposes,   is set to match the characteristic mass scale of the theory [14-15], 

( )O m  . A convenient (although coarse) approximation of (7) is obtained in the far limit 

2 2
UVm   . Under these conditions, it is seen that (1) emerges as an approximation of (7).  

There are two distinct interpretations of (1) or (7): 

a) If masses are nonvanishing ( 0)m  and the cutoffs are set to infinity ( DR
UV  ; 

)PR
UV  , (1) or (7) indicate that the spacetime fractality described by   vanishes 

away in the continuum limit of classical spacetime. 
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b) If the cutoffs are finite and on the same order of magnitude with the Planck scale [

( )UV PlO M  ], vanishing fractality ( 0  ) implies vanishing masses ( 0m  ), in 

line with the basis of conformal field theory. From a Statistical Physics viewpoint, 

conformality is akin to the onset of criticality, whereby vanishing masses correspond to 

diverging correlation lengths [
1( )O m  ]. In this interpretation, mass develops from 

the fractality of spacetime in the UV sector of field theory as deviation from ideal 

conformal behavior.  

A key observation is now in order: as alluded to in the Introduction, relations (1) and (7) reflect 

a dynamic regime that is non-integrable and falls entirely outside the boundaries of QFT. Indeed, 

DR cannot be extrapolated beyond perturbation theory, as fractal spacetime leads to a manifest 

violation of all consistency requirements mandated by QFT [2, 16]. In line with the Decoupling 

Theorem of QFT, the non-integrable regime of (1) or (7) asymptotically matches QFT in the 

conventional limit 0, UV    . 

Ref. [1, 17-18] indicate that the mass and coupling generation mechanism embodied in (1) or (7) 

are compatible with the standard Higgs mechanism of electroweak symmetry breaking. Taking 

complex-scalar field theory as baseline model, refs. [17-18] point out that the SM symmetry 

group unfolds sequentially from bifurcations driven by the running scale   .  

It is also instructive to emphasize that the UV/IR mixing generated by (1) or (7) echoes the 

bounds derived from non-commutative field theory and quantum gravity, see e.g. [19-22]. 

2.2) The Wilson-Fisher point of Statistical Physics 

Consider the Higgs potential of field theory written as, 

 
2 2 21

( ) ( )
2

    vV  (9) 

where v  stands for the vacuum expectation value of the Higgs boson and  is considered a real 

scalar field for simplicity. (9) can be cast in the form 

 4 2 2 41
( ) ( )

4HV V v v           (10a) 

(10) can be associated with the partition function of Statistical Physics based upon the functional 

integral [see e.g., 23] 

 [ ] exp( [ ])Z j D S   (10b) 
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where the action has the form, 

 2 41 1
[ ] ( )[ ] ( ) ( ) ( ) ( )

2 4
S dx x r x u dx x dx j x x         

r r r r r r r r
 (11) 

Here, ( )j x
r

 plays the role of an external current and the coefficient r  has the dimensions of 

[mass] ^ 2. Side by side comparison of (10a) and (11) leads to the identification, 

 2 22r m v   (12) 
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The RG analysis of (11) starts by splitting the field into its long and short wavelengths 

components according to [23] 
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where b  is a scaling factor and UV   denotes the upper energy scale of RG calculations. 

The RG flow of parameters ( , , )r j  is described by the so-called  -functions of the theory. To 

compute the  -functions, one considers an infinitesimal momentum shell integration defined by   

 exp( ) 1b l l     (17) 

and the RG flow equations in near 4-dimensional spacetime read, 

 
4 2

4 2
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u
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u K O u
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in which 
2 1

4 (8 )K   [24]. Equations (18) and (19) have a trivial (Gaussian) fixed point 

solution defined as 

 0 0r u r u         (20) 

To analyze the behavior of RG flows near (20), one proceeds by linearizing (18) and (19) and 

solving the corresponding eigenvalue equation. The pair of solutions satisfying the eigenvalue 

equation is given by, 

 1 2 0a    (21) 

 2 4a d     (22) 

It is seen that (22) is positive (relevant) for 4d   but negative (irrelevant) for 4d  . Since the 

Gaussian fixed point (20) corresponds to a vanishing quartic coefficient (12)-(13), it follows 

from this analysis that Higgs sector is unstable in less than 4d   dimensions but turns stable in 

4d   dimensions. A non-trivial fixed-point (called the Wilson-Fisher or WF point) of RG 

equations (18) - (19) emerges if one considers the small dimensional deviation 4 1d     as 

a tunable parameter. Expanding the RG equations to quadratic order yields 

 2
dr

r au bur
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with 
2

43a K   and 43b K . The WF point derived from (23) - (24) is located at, 
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The pair of eigenvalues associated with the WF point are found to be, 
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1 2 0

3
WF      (27) 

 2 0WF     (28) 

which makes the WF point stable in less than four dimensions ( 4d  ). The flows corresponding 

to the Gaussian and WF fixed points are displayed in Figs. 1 - 2 below. The key point of this 

analysis is that, according to (25) – (26), both mass ^ 2 term and coupling parameter of scalar 

field arise from the continuous and nonvanishing dimensional deviation  . In this sense, it is 

apparent that (25) - (26) are a replica of (1).  

 

Fig.1: The Gaussian fixed point of scalar field theory 

 

Fig. 2: The Wilson-Fisher fixed point of scalar field theory 
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We close our report with several observations which may be relevant for the further development 

of ideas detailed here: 

a) Ref. [25] asserts that SM represents a self-contained multifractal set, whose flavor and mass 

composition follows the bifurcation scenario of transition to chaos. 

b) Refs. [26, 28-30] list some of the early contributions devoted to the study of fractal spacetime 

in foundational physics. 

c) Ref. [27] explores the potential benefit of fractal spacetime in explaining some of the 

challenges of the Higgs sector (gauge hierarchy problem, triviality problem, and tachyonic 

mass term).  

d) Refs. [31-33] discuss various aspects of fractal spacetime on cosmological scales, in 

particular, the description of the cosmic web. 
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