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Abstract 

Fractals and multifractals are self-similar structures endowed with continuous dimensions. This 

tutorial traces the origins of fractal spacetime to the universal features of Hamiltonian chaos, 

conjectured to develop far above the Fermi scale ( 246v   GeV). A representative signature of 

Hamiltonian chaos is the fragmentation of phase-space into islands of stability embedded within 

ergodic layers. Fractal topology of Hamiltonian chaos may account for the multiply connected 

structure of the large-scale Universe, hinted by recent cosmological data. These observations 

raise the possibility that gravitational physics and Quantum Field Theory emerge from the 

chaotic regime of the early Universe.  

 

This is Part 2 of a two-part review article.   

 

Keywords: Hamiltonian chaos, fractal spacetime, continuous dimensions, nontrivial topology, 

gravitational physics, quantum Field Theory. 

 

4. Hamiltonian Chaos in classical gravity 

Given their utility in computational analysis, Poincaré maps are frequently used in the study of 

nonintegrable gravitational systems. A textbook example is the Hénon-Heiles model, which 

describes the motion of stars in the galactic disk. The Hamiltonian of the model is given by [11, 

18]:  

 
2 2 2 2 2 31 1

( )
2 3x yH p p x y x y y       (13) 

Because (13) is conservative, its orbits are confined to a constant energy hypersurface (H E ). 

Fig. 5 illustrates the sequence of maps in the ( ,y y& ) plane as E  (in dimensionless units) is 

progressively increased. At low energies, the orbits lie close to those computed from perturbation 

theory [18] 
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Fig. 5. Poincaré Maps of the Hénon-Heiles model [ref. 9] 

The system appears to maintain integrability up to 0.125E  , at which point chaotic regions 

begin to develop along with sparse islands of integrability. At 0.166..E  , the chaotic regions 

are widespread and integrability is almost entirely lost. For better visualization of the transition 

to chaos, Fig. 6 shows a color-coded representation of the map at 0.128E  .  
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Fig. 6. Color coded view of the Poincaré Map at 0.128E   [ref. 10] 

In line with assumption A2), similar phase-space behavior occurs in many classical field systems 

displaying transition to chaos under continuous tuning of driving parameter(s), see e.g. [19]. 

 

5. Hamiltonian Chaos and fractal spacetime 

It follows from these examples that a certain generality of Hamiltonian dynamics exists, based 

on the universal nesting of invariant tori and chaotic orbits. The distribution of regions 

containing invariant tori and chaotic orbits repeats itself on all scales and depends on the 

magnitude of the driving parameter(s) (K in the Standard Map or conserved energy E  in the 

Hénon-Heiles model). 

As chaos sets in above a critical value of the driving parameter(s), analysis shows that chaotic 

orbits repeatedly “stick” to the border of critical tori with a power-like distribution of sticking 

times [12-15]. This effect generates a long-time correlation of chaotic orbits and an anomalous 

diffusion of momentum in phase-space. If the driving parameter exceeds a critical value, the 

diffusion of the mean squared momentum no longer follows (12), but a power law relationship of 

the form [14] 

 2( )p t D t  (14) 

Here, the exponent 1   measures the departure from standard diffusion and can be interpreted 

as continuous dimension associated with the fractal topology of phase-space.  
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6. Conclusions 

Theory and experiment alike indicate that anomalous transport/diffusion is a defining feature of 

many complex systems, as it links to phenomena such as fractional dynamics, Levy flights, 

continuous time random walks and fractional Brownian motion, to name a few. As last two 

decades have shown, adequate description of these phenomena requires a radically different 

framework in which [see e.g. 16-17, 20] 

1) Fractional differential and integral operators replace ordinary calculus on smooth 

manifolds, 

2) Spacetime fractalization makes the transition from discrete to continuous spacetime 

dimensions. 

Given assumptions A1) and A2) and that (nearly) all classical field theories amount to 

Hamiltonian dynamical systems, a couple of natural questions arises, namely:  

a) What is the most sensible path that connects low-energy field theory and Hamiltonian 

chaos? 

b) Can the fractal/multifractal topology of spacetime explain some of the open issues 

challenging the Standard Model (SM) and strong gravitational physics?    

One recalls that Quantum Field Theory (QFT) lies at the foundation of the SM, which is built in 

compliance with several postulates called consistency conditions. It can be said, in fact, that the 

remarkable success of SM stems from a unitary, local, renormalizable, gauge invariant and 

anomaly-free formulation of QFT. Thus, a reasonable transition from Hamiltonian chaos to QFT 

can only be made via a spacetime having arbitrarily small and continuous deviations from four 

space dimensions, as in   

 
2

2 ]
( )( ) 4 ( ) [ 1

UV

mD O      


 (15) 

where  is the Renormalization flow scale, ( )m   is a mass parameter and UV  the large 

ultraviolet cutoff of the theory. The expectation is that (15) becomes relevant in far-from-

equilibrium and fully nonintegrable conditions, prone to develop far above the Fermi scale. 

Aside from the fragmentation of phase-space in Hamiltonian chaos, (15) arises from two other 

premises, namely,  

1) Dimensional Regularization of QFT, 

2) Emergence of nontrivial fixed points of the RG equations in statistical physics and the -

expansion evaluation of critical exponents., 
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Our research reveals that various aspects of ( )   lie behind many unsettled features of particle 

and gravitational physics, such as the multifractal geometry of the SM, the repetitive architecture 

of SM parameters, unexplained SM-related observations, the Cantor Dust structure of Dark 

Matter and the thermodynamic interpretation of General Relativity [20]. 
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