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Abstract 

Fractals and multifractals are well-known trademarks of nonlinear dynamics and classical chaos. 

The goal of this work is to tentatively uncover the unforeseen path from multifractals and self-

similarity to the framework of effective field theory (EFT). An intriguing finding is that the 

partition function of multifractal geometry includes a signature analogous to that of gravitational 

interaction. Our results also suggest that multifractal geometry may offer insights into the non-

renormalizable interactions presumed to develop beyond the Standard Model scale.  

Keywords: Deterministic chaos, multifractals, effective field theory, Lyapunov exponents, 

Renormalization Group, self-similarity. 

 

1. Introduction 

There is a vast panorama of objects and processes in Nature that exhibit self-similarity, either as 

“shape invariance” under scaling operations or invariance under scaling of variables defining a 

system. Examples include sets of fractional dimensions (fractals and multifractals), Levy flights 

and random walks, fluid turbulence, the geometry of quantum mechanical paths, anomalous 

diffusion, non-differentiable functions and fractional operators, percolation and crystal growth, 

self-organized criticality and so on. As defining property of nonlinear dynamics, self-similarity 

has emerged as common denominator of many theoretical frameworks, from the mathematics of 

chaos and complexity to critical behavior and the Renormalization Group approach to Quantum 

Field Theory (QFT) [8].   

 

The concepts of continuous dimension and entropy play a pivotal role in the analysis of 

selfsimilarity. Unlike simple fractals, multifractals are selfsimilar structures endowed with 

multiple dimensions and are naturally fit to describe the long-run evolution of chaotic 

phenomena.  In particular, 
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 Nonlinear dynamical systems and iterated maps can generate multifractals by 

fragmentation of the phase space. The crux of this observation is that both statistical 

behavior and fragmentation of the phase-space follow from strictly deterministic 

equations of motion, with no apriori assumptions about randomness and probability 

distributions [4]. 

 The long-term chaotic orbits of many dynamical systems are confined to invariant sets 

called strange attractors, whose characterization requires the language of multifractal 

geometry.  

 Fully developed chaos is, in fact, a faithful replica of equilibrium statistical mechanics. It 

can be shown that dynamics on a strange attractor displays thermodynamic-like behavior 

consistent with ergodicity, fluctuation-dissipation theorem, and invariant probability 

distributions [1-2, 4-5, 8]. 

 

The goal of this work is to tentatively uncover the step-by-step route from multifractals and 

selfsimilarity to effective field theory (EFT). The reader is cautioned upfront that our approach is 

far from being either fully rigorous and/or formally complete and that many relevant details are 

left out for concision and clarity. In a nutshell, our sole motivation is to initiate a new research 

avenue and to lay the groundwork for subsequent modeling efforts. 

 

The paper is organized in the following way: next couple of sections present the working 

assumptions of the paper and a brief pedagogical introduction to nonlinear maps and Lyapunov 

stability. Section 4 elaborates on the correspondence between the partition function of 

multifractal geometry and its counterpart of classical Thermodynamics. Drawing from the link 

between Lyapunov exponents and the Gaussian curvature of geodesic trajectories, section 5 

argues that the partition function of multifractal geometry includes a signature analogous to that 

of gravitational interaction. Section 6 suggests that multifractal geometry may offer insights into 

the hypothetical non-renormalizable interactions beyond the Standard Model (SM) scale. 

Concluding remarks are outlined in the last section. 

 

As pointed out earlier, further analysis and independent evaluation are needed to refute, confirm, 

or develop these lines of reasoning and determine their long-term viability.  

 

2. Working assumptions 

A1) We confine the discussion to low-dimensional nonlinear systems exhibiting dissipative 

behavior. Typical examples of such systems include non-invertible one-dimensional maps 

and non-conservative two-dimensional maps. 
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The rationale for choosing low-dimensional systems as starting point echoes the center 

manifold theory, where a multivariable system of differential equations is shown to reduce 

in the long run to a lower dimensional system of universal equations dependent on a single 

emerging variable [19-20]. On the same note, we recall that the dissipative behavior of many 

nonlinear systems falls in line with non-equilibrium dynamics of high energy observation 

scales [4-5, 17]. 

A2) Section 3) focuses exclusively on Lyapunov stability applied to trajectories having a 

limited extent in spacetime or phase space, which can be either stable, unstable or time-

dependent (fluctuating). 

A3) Section 5) focuses exclusively on weak and slowly varying gravitational fields, as 

typically described in introductory textbook on General Relativity.    

 

3. Nonlinear maps and Lyapunov exponents  

A hallmark feature of chaotic dynamics is sensitivity to initial conditions, which leads to the 

exponential instability of nearby phase-space trajectories. The separation between adjacent 

trajectories grows exponentially in time according to 

 ( )x t  ~ (0) exp( )x t   (1) 

for 0  . To fix ideas, consider a one-dimensional nonlinear system whose time evolution is 

described by the iterated map 

 1 ( )n nz f z   (2) 

where the iterates nz  are confined to a bounded interval  min max,z z  as n  . The phase space 

of (2) is defined by the axis containing the set of z  values. Let 0 1 2 ...z z z   represent a 

trajectory starting from the initial point 0z . Linearizing the map about this trajectory for a nearby 

initial point 0 0z z  implies that 

 1 1 1 1 1( ) ( ) '( ) ...n n n n n n nz z f z z f z f z z             (3) 

By these arguments, the equation describing the linearized error propagation reads [4] 

 1 1'( )n n nz f z z    (4) 
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Labelling the initial separation of two nearby trajectories by 0z , the closed form solution of (4) 

can be presented as 

 
1

0
0

'( )
n

n i
i

z f z z 



   (5) 

where ( )

0
( )n

n
z f z  is the th

n  iterate of (2) starting from 
0

z . Therefore, 

 ( ) '

0 0( )n

nz z f z   (6) 

By (1), (6) leads to the following definition of the Lyapunov exponent 

 ( ) ' ( ) '

0 0

1
( ) exp( ) ln ( )n nf z n f z

n
     (7a) 

 0 exp( )nz z n    (7b) 

On the other hand, by (5), one can write 

 
1

1 1

00 1 2 0 0

... ln ln '( )

n

nn n n
i

in n

zz z z z
f z

z z z z z

   
    




 

    (8) 

Comparative inspection of (6)–(8) in the limit 1n   yields a consolidated expression of the 

maximal Lyapunov exponent in the form 

 

1

( )'

0

0

1 1
lim ln '( ) ln ( )

n

n

i
n

i

f z f z
n n







   (9) 

Similar arguments apply to the Lyapunov exponents of higher dimensional maps. Consider, for 

example, a two-dimensional map given by 

 1 ( , )n n nx f x y  ;  1 ( , )n n ny g x y   (10) 

It can be shown that an area element na  of the phase space defined by 1( , )n nx x and 1( , )n ny y  

evolves as 

 1 2 0exp[ ( )]na n a      (11) 

The condition 1 2 0    specifies regular motion in phase space and an area preserving 

(conservative) map, whereas 1 2 0    describes dissipative motion and a non-conservative 
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map. Deterministic chaos typically requires a dissipative map, along with one positive Lyapunov 

exponent 0i  , and generates fragmentation of the phase-space and the onset of strange 

attractors in the limit 1n  . 

 

All these considerations point out that the Lyapunov exponents for any given map determine the 

stability attributes of its trajectory.  

 

4. Multifractal geometry as analog of classical Thermodynamics 

Although the thermodynamic formalism of multifractal structures is not new, we briefly 

introduce the topic here to make the paper self-contained and accessible to a large audience. 

A remarkable property of non-invertible maps of the type (2) is that, when 1n  , consecutive 

iterations (2)

1 1( ) ( ) ...n n nz f z f z     produce a partition of the phase-space in nN  disjoint 

intervals of relative lengths i ir l L  , where L  is the span of the interval min max[ , ]z z [1, 4]. In 

geometric terms, it is customary to refer to this partition as a multifractal set. In the context of 

multifractal sets, a key concept is the generating function defined as [4, 6] 

 

 
( )

1

( )
nN

q q

i i

i

q p r




   (12) 

subject to the normalization condition 

 
1

1
nN

i

i

p


  (13) 

Here, ip  is the relative frequency with which the iterated map falls in the th
i  interval of the 

phase space, while q  and ( )q  are continuous scaling exponents ( q    ). It can be shown 

that the generating function (12) stays invariant to interval rescaling and converges to unity if 

(and only if) [1, 4, 6]  

 ( ) 1 ( ) (1 ) qq q q D      (14) 

where qD  labels the so-called Rényi entropy (or generalized dimension) of multifractal geometry 

generated by (12).  
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For an even distribution of iterates ( ip p ) and 1n  , the generating function (12) translates to 

the condition (16) below, namely [4] 

 1( )
q q q

i
n

p p
N

   (15) 

 
( )

1

nN

q q

n i

i

N r




  (16) 

A closer look at (16) suggests that the even distribution of iterates in the long-time limit 1n   

echoes the partition function of Thermodynamics. As stated in the Introduction, this observation 

is not all that surprising on account of the analogy between fully developed chaos and 

equilibrium statistical physics. One can thus formally treat (16) as a multifractal partition 

function as in 

 
( )

1

( )
nN

q

n i

i

Z r




  (17) 

By the error propagation equation (6)-(7), it is reasonable to expect that the accumulated error 

satisfies 

 exp( )n i iz n z    (18) 

Here, i  is the Lyapunov exponent for the trajectory of (2) starting from the initial condition iz , 

namely 

 ( ) '1
ln ( )n

i if z
n

   (19) 

The so-called backward map iteration starts from the whole phase space min max[ , ]z z and 

partitions it in a distribution of disjoint intervals, a process that is formally equivalent to coarse 

graining 0f the phase space [4]. It is intuitively clear that coarse graining by backward iteration 

mirrors the error propagation equation (18), which describes the progressive growth of 

separation between nearby trajectories. As a result, setting the maximal propagation error to 

unity, and performing the identification [4] 

 ( )n

i iz r   (20) 

leads to 

 ( ) exp( )n

i ir n   (21) 
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Direct substitution of (21) in (17) gives  

 
1

( ) exp( )
n

N

n i

i

Z n 


   (22) 

The multifractal partition function (22) may be alternatively expressed as a sum over Lyapunov 

exponents, as in  

 ( ) ( )exp( )nZ N n


     (23) 

where ( )N   is the number of intervals with the same exponent  . Invoking the correspondence 

between the exponent ( )q  and the free energy of a thermodynamic system ( )F  , where 

1q T   , yields [9] 

 ( ) ( )q qF F     (24) 

Accordingly, (23) turns into 

 ( ) ( )exp[ ( )]nZ N n F


      (25) 

or 

 , ,( ) ( )exp[ ( )]n nZ N F 


      (26) 

where 

    , ( ) ( )nF n F     (27) 

It is apparent that (26) generalizes the canonical partition function of Thermodynamics, by 

including in its expression the Lyapunov exponents   and the number of map iterations n . A 

glance at (1) and (7) shows that a vanishing   signals conservative dynamics, whereby the 

trajectory error nz  assumes a stationary value 0nz z  . This observation hints that, in order to 

cast (26) in a form more suggestive of its analogy with Thermodynamics, one may use the 

convenient transformation  

 1    (28) 

so that 0   amounts to 1  . Assuming that there is only one Lyapunov exponent and 

substituting (28) into (26) yields 
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,

( ) exp[ ( )]n n
Z F


     (29) 

whose thermodynamic analog corresponds to 1, 1n    and is given by 

 ,1( ) exp[ ( )]thZ Z F       (30) 

 

5. Non-Euclidean metric and multifractal geometry 

The goal of next two sections is to bridge the gap between multifractal geometry and the 

framework of effective field theory (EFT), with emphasis on General Relativity and the Standard 

Model of particle physics (SM). 

 

Let us first recall that the inherent sensitivity of geodesics to initial conditions connects their 

Lyapunov exponents ( i ) to the local Gaussian curvature ( K )  via [3, 6, 21] 

 i K   (31a) 

It follows from (31a) that the K  represents a local measure of geodesic instability. At the same 

time, the concept of Kolmogorov entropy ( )KS  quantifies the amount of information lost or 

gained in the flow towards chaos of generic nonlinear dynamical systems [2-3, 6, 10]. It can be 

shown that KS  relates to the sum of positive Lyapunov exponents as in [2-3]  

 , 0K i ii
S d  


   (31b) 

where the integral is taken over the phase space  , whose differential measure is d . 

Taken together, (29), (31a) and (31b) hint that there is an intriguing relationship between the 

partition function of multifractal geometry and the non-Euclidean metric of General Relativity. 

In particular, the Lyapunov exponents entering (29) describe effects analogous to those induced 

by gravitation, from which they decouple in the corresponding limit of flat spacetime, where 

0K   together with 0i   and 1i  .  

 

An important point is now in order. It is known that all the points on a trajectory are described by 

the same Lyapunov exponent. This may raise a challenge to the validity of (31a), since K  is a 

local and not a global attribute. Using assumptions A2) and A3), one way out of this challenge is 

to replace K  in (31a) with the average curvature across the trajectory span as in 



Prespacetime Journal| December 2021| Volume 12 | Issue 5 | pp. 465-478 

Goldfain, E., Mapping Effective Field Theory to Multifractal Geometry 

 

ISSN: 2153-8301 Prespacetime Journal 

Published by QuantumDream, Inc. 

www.prespacetime.com 

 

473

 
1

( )K K s ds
L 



   (32) 

in which L denotes the arclength of the trajectory. 

By (6) and (7), the only setting consistent with 0i   and 0K   is .nz z const   , which 

means a stationary deviation from initial conditions. It follows from these considerations that 

conditions akin to Euclidean spacetime and equilibrium Thermodynamics are recovered in the 

asymptotic regime defined by 0i   and 1i  . These results can be symbolically 

summarized as follows 

 ,10 0 ( ) exp[ ( )]thK Z F          (33) 

Appealing to (11), one finds that (33) matches the concept of non-conservative maps ( 0)   

with the nonvanishing curvature of General Relativity. This result is consistent with the fact that 

General Relativity fails to comply with the global conservation of the energy-momentum tensor. 

Conversely, strictly conservative dynamics in the Lyapunov sense ( 0)   echoes the settings of 

both Thermodynamics and field theory in Euclidean spacetime. 

 

As previously pointed out, non-vanishing Lyapunov exponents are widely used to quantify 

instability and the onset of chaos in systems of nonlinear equations and iterated maps. In this 

context, universality arguments suggest that the exponential separation of orbits in one-

dimensional maps (1) and the spread of nearby geodesics in Riemannian geometry must share a 

common foundation. 

 

To explore a basic embodiment of this idea, consider the Jacobi equation (JE) describing the 

separation of nearby geodesics ( )s  as a function of the local Gaussian curvature of the 

manifold ( )K s . Since it relates the stability or instability of a geodesic flow with the curvature of 

the local manifold, JE is considered a portal to unexplored connections between geometry, 

topology and chaotic dynamics [21]. It is given by [3, 21] 

 
2

2

( )
( ) ( ) 0

d s
K s s

ds


   (34) 

The arclength s  ca be operationally identified with either time ( t ) of (1) or number of one-

dimensional map iterations n  in (2) [21]. On this basis, the exponential divergence of unstable - 

and possibly fluctuating - nearby trajectories may be presented as 

 ( ) (0)exp[ ( ) ] , ( ) 0x s x s s s       (35) 
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Unstable solutions of (34) for manifolds with negative curvature ( 0)K   are given by [21] 

 
sinh( )

( )
K s

s
K s







 (36) 

By (32), (31b) and (35), it is reasonable to infer that Lyapunov exponent of (36) and the 

associated phase space density of Kolmogorov entropy are on the order of 

 
1 sinh( )

( ) ln [ ]
K s

s
s K s







 (37) 

 
1 sinh( )

ln [ ]KdS K s

d s K s





 (38) 

At least in principle, relation (38) opens an unforeseen path from multifractals and 

Thermodynamics to Riemannian geometry.  

 

Given the known analogy between Thermodynamics and Euclidean Quantum Field Theory 

(QFT) [11], we believe that these findings point to a hypothetical connection between QFT and 

General Relativity and a possible path towards unification based upon multifractal geometry.  

 

6. Multifractals and physics beyond the Standard Model 

Moving onto the EFT, we recall the expression of the effective field Lagrangian in d spacetime 

dimensions [12] 

 
eff k k

k

L c O
 (39) 

where  kO  are local operators compliant with the symmetries of the theory and built from fields 

describing the low-energy sector. Proceeding by analogy with the generating function of 

multifractal analysis (12), we can write 

 
1

eff k k

keff

c O
L

    (40) 

and demand that (40) converges to unity if the mass dimensions of coefficients kc  and of 

operators kO  satisfy (14). Since the mass dimension of the Lagrangian is equal to d , one has 
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 1
k k

d k k
eff d

k

c O
L M

M M
 

        (41) 

in which k  stands for the mass dimension of operator kO . Therefore, 

 
1 ( ) 1

( ) 1

k
k k

k

k k

d
d

k k k k

d
k k

c O c O

M M M M

 


 

 
  

 
   (42) 

Relation (42) may be mapped to (12)-(14) with the identification 

 
1 ( )

( )
k

k

d
d qk

i

c
p

M


   (43) 

in which  

 
1 ( )

1
kd

k

k

c

M



  (44) 

and 

 
1

( )
( )

k

k qk
i

O
r

M




   (45) 

Besides (44), we proceed with the following assumptions: 

A1) The effective Lagrangian (39) contains individual groups of terms having the same 

mass dimension l  ( )l k .  

A2) Each operator lO  is a composite containing the product 1 2 1...l lO O O O   such that the 

following generic relationship holds     

 1 2 1( ) ( , ,..., )l ld f       (46a) 

To simplify notation, we omit below the index l  and the scaling exponent q  and write 

 ( ) ( )ld d    (46b) 

By (14) and (42)-(46) and for a given q , we obtain the expression of the generalized dimension 

of the dynamics described by (39) as in 

 
1

( ) (1 ) ( )
( ) 1

q effq q D D d
Q d

    


 (47a) 
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where 

 
1

( )
( )

d
Q d

d





 (47b) 

It is instructive to note that, setting the mass dimension of the effective Lagrangian to equal the 

spacetime dimension, forces the generalized dimension (47) to also be equal to d , i.e. 

 ( ) ( )effd d D d d     (48) 

The Standard Model (SM) Lagrangian in four dimensional spacetime offers a straightforward 

example of (48), as the characteristic mass dimension of its interactions is 4SMD d  . Non-

renormalizable interactions above the SM scale ( SMM  ) add high order terms to the effective 

Lagrangian as in [12] 

 
4

k
eff SM k

k

L
L L


 

 ,    5k   (49) 

It is seen from (46), (47) and (49) that the contribution of high order terms ( 5)k   yields a larger 

overall dimension ( 4)d  , which leads in turn to a lower Rényi entropy ( 4)effD d  . This 

speculative scenario hints that non-renormalizable interactions above the SM scale may generate 

self-organized critical behavior accompanied by a corresponding drop in entropy. 

 

7. Conclusions and outlook 

This tentative analysis has argued that there is an unexplored path linking multifractal geometry 

to both relativistic physics and the low-energy framework of the Standard Model. A thought-

provoking assertion is that the partition function of multifractal geometry includes effects akin to 

classical gravity. Results also suggest that multifractal geometry may shed light onto the regime 

of non-renormalizable interactions presumed to occur beyond the Standard Model scale. 

Further studies are needed to substantiate, refute, or develop these findings along the following 

directions: 

 

1. Ref. [6] has found that the four dimensionality of classical spacetime emerges from the 

Rényi entropy of geodesic trajectories for 1 2q  , as given by 1 2 4D  . It is known that 

the familiar Hausdorff dimension 0HD D  corresponds to 0q  . Since 1q T   by (24), 

the temperature analog at this value is 1T q  , indicative of the Planckian regime 
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of the Big Bang singularity, where the concept of GR metric likely breaks down.  As the 

Universe expands and cools off, the temperature drops and q  goes up from zero to 

1
2

q  , which explains why 1 2 4D   at 1 2q  . Can this assertion be corroborated with 

additional arguments stemming from multifractal geometry and the transition to chaos of 

nonlinear dynamics? 

 

2. Following [17], how is the generalized dimension (47a) linked to non-integrability and 

the transition to chaos beyond the Standard Model scale? Is it conceivable that Dark 

Matter is a hidden manifestation of the Rényi entropy qD  defined in (14) and its 

dimensional condensation, as pointed out in [18]?  
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