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Abstract 

In this paper, the tubular surface generated by rectifying curves are explored. Also, using the 
Gaussian and mean curvatures of tubular surfaces, for the linear Weingarten surfaces and 
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1.  Introduction 
 

In mathematics, a surface is a geometrical shape that corresponds a disfigured plane. The most 
common examples arise as boundaries of solid objects in ordinary three-dimensional Euclidean 
space. In the study of the differential geometry of surfaces, it is common to determine some 
surfaces satisfying curvature conditions. Also, the differential geometry of surfaces deals with the 
differential geometry of smooth surfaces with various additional structures for example a 
Riemannian metric. Surfaces have been extensively studied from various perspectives: 
extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their 
properties determined solely by the distance within the surface as measured along curves on the 
surface. 
 
A surface whose mean curvature is in functional relationship with its Gaussian curvature. Namely, 
a surface is said to be a Weingarten surface if there exists a relation, that does not depend on the 
parameters, between the mean curvature and the total curvature (or between the principal 
curvatures). Also, a surface is said to be a Weingarten if there is a smooth relation �(��, ��) = 0 
between two principle curvatures �� and ��. If 
 and � denote the Gauss curvature and the 
mean curvatures, respectively, then �(��, ��) = 0  implies a relation as Φ(
, �) = 0 . The 
existence of a non-trivial functional relation Φ(
, �) = 0 on a surface, which is parameterized 
by a patch 
(�, �), is equivalent to the following Jacobian determinant [9], 
 

 
�(�,�)
�(�,�) = 0, (1.1) 
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Furthermore, if the equations � = ���� + ���� − ��  or Φ = ��� + ��
 − ��  hold, the 
surfaces are called linear Weingarten surfaces, where ��, � ∈ ℝ with ��� + ��� ≠ 0. The following 
points are important for consideration: 
 

1. If the constant �� = 0, a linear Weingarten surface reduces to a surface with constant 
Gaussian curvature. 
 

2. If the constant �� = 0, a linear Weingarten surface reduces to a surface with constant 
mean curvature. 

 
On the other hand, if a surface satisfies the following equation 
  

 ���� + 2���
 + ��
� = constant, �� ≠ 0, (1.2) 
 
then the surface is said to be a �
 −quadric surface, [6]. Also, the surfaces of revolution and 
surfaces with constant mean or constant Gaussian curvature are given as examples of Weingarten 
surfaces. Also, the linear Weingarten surfaces can be expressed as natural generalization of 
surfaces with constant Gaussian curvature or constant mean curvature, [9]. 
 
In [1], timelike tube surface around the spacelike curve with timelike and spacelike binormal 
vectors is studied in a three-dimensional Minkowski space %��  by the authors. Moreover, 
Weingarten and linear Weingarten conditions are given for this surface with respect to their 
curvatures. The same studies and consequences about surfaces in &� are given by the authors in 
[2, 3]. In [8], the surfaces in Euclidean 3-space foliated by pieces of circles are studied and that 
satisfy a Weingarten condition of type �� + '
 = (; �, ', ( ∈ ℝ, � and 
 denote the mean 
curvature and the Gauss curvature respectively, by the author. In [12], a tube in a Euclidean 3-space satisfying some equation in terms of the Gaussian curvature, the mean curvature and the 
second Gaussian curvature are studied by the authors.  
 
In [14], that parallel surfaces of a non-developable ruled surface are not ruled surfaces by using 
fundamental forms is studied. Also, that parallel surfaces of ruled Weingarten surface are 
Weingarten surface is shown by the authors. Furthermore, ruled Weingarten surfaces in the 
Galilean space are studied by the authors, in [15]. Weingarten surfaces are surfaces having a 
nontrivial funcional relation between their Gaussian and mean curvature. The same consequences 
about surfaces and curves in &� and pseudo Galilean space are given by the authors in [9, 10, 17]. 
Also, the some consequences about surfaces and curves in different ambiant spaces are 
investigated by the authors in [5, 6, 16]. 
 
 
2. Preliminaries 

 
Classical context of the Euclidean space is the origin of results, which could be transferred to some 
other geometries. One way of defining new geometries is through Cayley-Klein spaces. They are 
expressed as projective spaces, *+,,   with an absolute figure, which is a subset of *+, 
originating as sequence of quadrics and planes 1. The projective space, *+,, has invariants as the 
absolute figure definitition for the subgroup of projectivities named as the Cayley-Klein space 
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group of movements. By means of the absolute figure, metric connections are defined and they are 
invariant under the group of movements. 
 
The scalar product of the vectors � = (-�, -�, -�), . = (��, ��, ��) in &� is defined as, 
  

 ⟨�, .⟩ = 1-���, if  -�   ≠ 0or��   ≠ 0-��� + - 6��, if  -�   = 0, ��   = 0  (2.1) 

 
The cross product in Galilean space is given as 
 

 � × . = 1(0, ��-� − ��-�, ��-� − ��-�), if-�   ≠ 0or��   ≠ 0(��-� − ��-�, 0,0), if-�   = 0, ��   = 0  (2.2) 

 
Let 8: : ⊂ ℝ → &� be a curve given by 8(=) = (=, >(=), ?(=)). The vectors of the Frenet-Serret 
frame are defined by  

 A(=) = 8B(=) = (1, >B(=), ?B(=)); E(=) = FG(H)
I(H) ; '(=) = +G(H)

J(H) , 
where the real valued function K(=) =∥ AB(=) ∥ is given as the first curvature of the curve 8, the 
second curvature function is defined as M(=) =∥ EB(=) ∥ . For the curve in &� , Frenet-Serret 
equations are written as follows  

 AB = KE, EB = M', 'B = −ME. (2.3) 
 
Let the equation of a surface Θ = Θ(=, �) in &� be given by  

 Θ(=, �) = (
(=, �), >(=, �), ?(=, �)). (2.4) 
 
Then the unit isotropic normal vector field O on Θ(=, �) becomes as  

 O = P,Q×P,R
SP,Q×P,RS, (2.5) 

where the partial differentiations with respect to = and � will be denoted as follows  

 Θ,� = �P(H,�)
�H ; Θ,� = �P(H,�)

�� . (2.6) 

On the other hand, the isotropic unit vector T on the tangent plane of the surface is given 
by  

 T = U,RP,QVU,QP,R
� , (2.7) 

where 
,� = �U(H,�)
�H , 
,� = �U(H,�)

��  and � = SΘ,� × Θ,�S. 
 
Let us define  

 W� = 
,�, W� = 
,�, W�X = W�WX; W Q = U,R
� ; W R = U,Q

� ; W�X = W�WX; �, Y = 1,2 (2.8) 

 ℎ�� = [Θ,�∗ , Θ,�∗ ], ℎ�� = [Θ,�∗ , Θ,�∗ ]; ℎ�� = [Θ,�∗ , Θ,�∗ ], (2.9) 
where Θ,�∗  and Θ,�∗  are the projections of the vectors Θ,�  and Θ,�  onto the >? -plane, 
respectively. The first fundamental form ^=� of the surface Θ(=, �) is given as, [7, 11], 
  

 ^=� = ^=�� + ^=�� = (W�^= + W�^�)� + _(ℎ��^=� + 2ℎ��^=^� + ℎ��^��), (2.10) 
 where 
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 _ = 10, ^�: ^��non − isotropic1, ^�: ^��isotropic  (2.11) 

 
In this case, the coefficients of ^=�  are denoted by W�X∗ . The function can be represented in terms 
of W� and ℎ�X as follows  

 �� = W��ℎ�� − 2W�W�ℎ�� + W��ℎ��. 
 
The Gaussian curvature and the mean curvature of a surface are defined by means of the second 
fundamental form a�X  coefficients, which are the normal components of Θ,�,X(�, Y = 1,2) . 
Namely,  

 Θ,�,X = ∑  cd�
� Γ�XcΘ,c + a�XO, (2.12) 

where Γ�Xc  is the Christoffel symbols of the surface and a�X are given as 
  

 a�X = �
fQ [W�Θ ,g,h∗ − W�,XΘ ,Q∗ , O] = �

fR [W�Θ ,g,h∗ − W�,XΘ ,R∗ , O]. (2.13) 

 
From this, the Gaussian curvature 
 and the mean curvature � of the surface are given as,  

 
 = iQQiRRViQRR
�R , � = fRRiQQV�fQfRiQRjfQRiRRR

�R , (2.14) 

[7, 11, 13]. 
 
Definition 1  A vector 
 = (
�, 
�, 
�) is called a non-isotropic if 
� ≠ 0. All unit isotropic 

vectors are of the form 
 = (1, 
�, 
�). For isotropic vectors, 
� = 0 hold, [7].  
 
Proposition 1 kl Laplacian of the differentiable function given by l: � ⊂ ℝ� → ℝ is defined as  

 kl = mnRo
npRq + mnRo

n�Rq , (-, �) ∈ �. 
If kl = 0 then the function l is harmonic in �, [4].  

 
 

3. The Special Tubular Surfaces Generated by Rectifying Curves in Galilean 

3-Space 
 

In this work, the tubular surface generated by rectifying curves are examined, and using the 
Gaussian and mean curvatures of the special tubular surfaces, the conditions being linear, 
Weingarten surfaces and �
 −quadric surface are expressed. 

 
3.1  Characterization of isotropic rectifying curves in rs 

 
In this subsection, using the position components of vectors’ curvature functions, the rectifying 
curves in &� can be described. 
 
Theorem 1  Let 8: : ⊂ ℝ → &� be a regular isotropic curve with curvatures K(�) ≥ 0, M in &�. 

Then, 8 is a rectifying curve if and only if the position vector of 8 satisfies the vector equation  
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 8(�) = (� + ()A⃖ + I(�)(�jv)
J '⃖w �E^ M(�) = I(�)(�jv)

n , (, ^ ∈ ℝx. (3.1) 

 

Proof. Assume that 8(�) is an rectifying curve with the curvature functions K(�), M(�) in &� 
as follows 

 8(�) = ΣxA⃖ + Σ�'⃖w, (3.2) 
 
for some differentiable functions Σx(�), Σ�(�) and differentiating (3.2) with respect to � and 
using (2.3), one can obtain  

 A⃖ = ΣxB A⃖ + (ΣxK − Σ�M)E⃖w + Σ�B '⃖w. (3.3) 
 
Exposing the inner product A, E, ' of the both side in (3.3), respectively, one can have 

 ΣxB = 1; ΣxK − Σ�M = 0; Σ�B = 0. (3.4) 
 
Using (3.4) and making necessary calculations, one may get, 

 Σx = ( + �; Σ� = ^orΣ� = I(�)(�jv)
J . (3.5) 

Thus, one can find the position vector as, 

 8(�) = (( + �)A⃖ + ^'⃖w = (� + ()A⃖ + I(�)(�jv)
J '⃖w. 

 
3.2  The mathematical approach on tube surfaces with rectifying curve in rs 

 
In this section, the tubular surfaces generated by rectifying curve are investigated according to 
mathematical approach. A canal surface is expressed as the envelope of a setting out sphere with 
exchanging radius, which is described by the orbit 8(�(=)) (spine curve) with its center and a 
radius function z  in addition to its parametrized through Frenet frame of the spine curve 8(�(=)). If the radius function z is a constant, then the canal surface is called as a tube. Let one 
denotes by z the vector connecting the point from the parametrized curve 8(�(=)) with the 
point from the surface, one can have the position vector , of a point on the surface as 
  

 , = 8(�(=)) + z, � ∈ ℕ, (3.6) 
 
and since z lies in the Euclidean normal plane of the curve 8(�(=)), the points at a distance |� 
from a point of 8(�(=)) form an Euclidean circle in &�, [3]. Thus, it can be written as z =
|�(cos��E→ + sin��'→), where �� is the Euclidean angle between the isotropic vectors E⃖w and z⃖. 
 
Let Θ(�, ��) be the tube surface generated by rectifying curve and let 8: : ⊂ ℝ → &�  be a 
regular isotropic curve with curvatures K(�) ≥ 0, M in &�. Then, the tube surface generated by 
rectifying curve is parametrized as 
 

 Θ(�, ��) = 8(�(=)) + |�(cos��(=)E⃖w + sin��(=)'⃖w), (3.7) 
 
where angle �� lies between the isotropic vectors E⃖w and ,⃖w = |�. Clearly, one can get, 
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 Θ(�, ��) = (� + ()A⃖ + |�cos��E⃖w + (^ + |�sin��)'⃖w (3.8) 
or 

 Θ(�, ��) = (� + ()A⃖ + |�cos��E⃖w + (I(�)(�jv)
J + |�sin��)'⃖w. (3.9) 

 
Then, one can get partial derivatives of  Θ(�, ��) with respect to � and �� as follows 
 

 Θ� = A⃖ + }(� + ()K − M(^ + |�sin��)~E⃖w + M|�cos��'⃖w = �� , (3.10) 

 Θ�Q = |�(−sin��E⃖w + cos��'⃖w) = |���Q; (3.11) 
 
It follows that the vector cross product of them is obtained as 
  

 Θ� × Θ�Q = −|�cos��E⃖w − |�sin��'⃖w; (3.12) 

 SΘ� × Θ�QS = |�. (3.13) 
 
From previous equations, by using (3.12) and (3.13), the unit isotropic normal vector O  of 

Θ(�, ��) is given as follows O = −cos��E⃖w − sin��'⃖w. Furthermore, from (2.7), one can obtain 

T = V��QQ
�Q = sin��E⃖w − cos��'⃖w.  Since, E⃖w  and '⃖w  are the isotropic vectors, the Galilean frenet 

frame, usage leads to, 
 

 
(�, ��) = � + (; 
� = 1 = W�; 
�Q = 1 = W�; W�� = 1, W�� = 0, W�� = 0; (3.14) 

 W� = 0, W� = V�
�Q ; ℎ�� = 1, ℎ�� = 0, ℎ�� = |��. (3.15) 

 
After the substitution of (3.14) and (3.15) into (2.10), the coefficients of the first fundamental form 
of the tubular surface can be obtained with the Galilean frenet frame in Galilean space as 
  

 : = ^�� + _(^�� + |��^���)or: = 2^�� + |��^���; _ = 1. (3.16) 
 
If one wants to calculate the second fundamental form of Φ(�, ��), it is then necessary have to 
compute the following equations 
 

 Θ�� = (2K + (� + ()KB − MB(^ + |�sin��) − M�|�cos��)E⃖w 
 +(MK(� + () − M�(^ + |�sin��) + MB|�cos��)'⃖w, 
 Θ�Q�Q = |�(−cos��E⃖w − sin��'⃖w); Θ��Q = −M|�cos��E⃖w − M|�sin��'⃖w. (3.17) 

 
The coefficients of the second fundamental form are calculated from (2.13) and (3.14), (3.17), as 
follows  

 a�� = }−2K(�) + MB^ − KB(�)(� + ()~cos�� + M�|�; 
 a�� = |�; a�� = M|�. (3.18) 

 
Thus, the Gaussian curvature 
 and the mean curvature � are expressed as 
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 = VI(�)����Q
�Q (M^ = K. (� + ()), (3.19) 

 � = �
��Q. (3.20) 

and from M(�) = (�jv)I(�)
n  and (3.19), (3.20), the curvatures of the rectifying curve are obtain as 

  

 K(�) = V�
2�cos�Q ; M(�) = V(�jv)�

�n�����Q. 
 
Hence, the following theorem can be given.  
 
Theorem 2 Let � be a tubular surface by generated a rectifying curve in &�. Then, the curvatures 

of the rectifying curve are given as  

 K(�) = V�
2�(�=�Q ; M(�) = V(�jv)�

�n�v�H�Q. 
 
Theorem 3 A tubular surface �  by generated a rectifying curve in &�  is also a �(
, �)-Weingarten surface. 

 
Proof. From definition of the Weingarten surface, taking derivative of 
 and � with respect to � and �� yields, 
 

 
� = (J��(�)nVI��(�)(�jv)V�I�(�))����Q
�Q , �� = 0; 

 
�Q = V}J�(�)nV(�jv)I�(�)V�I(�)~����Q
�Q , ��Q = 0. 

 

Since 
(�jv)I(�)

n = M(�), for a rectifying curve, one can write 

 
� = VI�(�)����Q
�Q , �� = 0; 
�Q = I(�)����Q

�Q , ��Q = 0. (3.21) 

 
Furthermore, if the tubular surface Θ generated by a rectifying curve in &� satisfies the equation Φ(�, �) = 0, then the surface is called as Φ(
, �)-Weingarten surface. Therefore, by using 
(3.21), we get  

 Φ(
, �) = �(�,�)
�(�,�Q) = 
���Q − 
�Q�� = 0, 

 
and we say that the surface Θ is a Φ(
, �)-Weingarten surface.  

  

Theorem 4  If � is a linear Weingarten surface in &�, for �� ≠ 0, �� ≠ (�+j�)�
� , E ∈ ℕ, the 

tubular surface � generated by the rectifying curve is a linear Weingarten surface, while it is also 

a flat surface reduced to a cylindrical surface with constant Gaussian curvature. 
 

Proof. Let Θ be a linear Weingarten surface in &�, then from the definition of the Weingarten 

surface, by using the equations 
 = VI(�)����Q
�Q  , � = �

��Q, one can reach to 
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 ��
 + ��� = �� 

 ��. VI(�)����Q
�Q + ��. �

��Q = �� 

 −K(�)2��. cos�� + (�� − ��2|�) = 0. 
 
From the definition of the linear independent of vectors, 
 

 −K(�)2��. cos�� = 0 and (�� − ��2|�) = 0 
 

and by using previous equations, from |� = VI(�)����Q
� , one have 

  

 
�R

��6 = |�; K(�) = 0 ⇒ �R
��6 = VI(�)����Q

�  �E^ �� = 0. (3.22) 

 
Hence, the surface Θ is a cylinder and for the constant �� = 0, the surface Θ is reduced to a 

cylinder surface with constant Gaussian curvature. Therefore, from K(�) = 0 and 
 = VI(�)����
�  

equations, 
 = 0 is found that the surface is flat. 
 
Theorem 5  Let � be a tube surface with rectifying curve in &�. For the parameter 

  

 �� = ��(cos ��R/��6
I(�) � = ��(cos �m�R

�6q �
� cos���, 

 
the surface Θ is a �
 −quadric surface.  
 
Proof. Assume that the tubular surface Θ  is �
 −quadric surface. From definition of the �
 −quadric surface, after taking necessary differentials it is possible to have calculations, we get 
  

 ����� + ��(��
 + �
�) + ��

� = 0. 
 

Then, by using the equations 
� = (J��(�)nVI��(�)(�jv)V�I�(�))����Q
�Q  and �� = 0,  one can 

obtain 
 ���
� + ��

� = 0, (^M�� − (� + ()K�� − 3K�)cos��}�� + 2��cos��(^M� − (� + ()K� − 2K)~ = 0. 

 
Later from the previous equation, one gets 
  

 (M��^ − K��(� + () − 3K�) = 0 
or 

 }�� + 2��cos��(M�^ − K�(� + () − 2K)~ = 0. 
 
For a rectifying curve in &�, since (� + ()K(�) = M(�)^, one can get  

 (�� − K2��cos��) = 0. 
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Hence, since K(�) = V�
������Q, the parameter �� can be written as 

  

 �� = ��(cos ��R/��6
I(�) � = ��(cos �m�R

�6q �
� cos���. (3.23) 

 
Therefore, one can state that the tubular surface Θ  generated by the rectifying curve is �
 −quadric surface. 
  

 
 

Figure 1. The Weingarten tube surface formed by the rectifying curve in Galilean space  
 

Theorem 6 The tubular surface � generated by a rectifying curve in &� is a harmonic ⇔ the 

following expression is provided  

 � = ��, � ∈ ℤ or � = arccos �V�
�

�Rm(���)�(�)
�(�) q

��R �. 
  
Proof. Let the tube surface Θ be formed by the rectifying curve 8 in &�. Also, in order for its Θ�, � = 1,2,3 coordinates functions to be harmonic, it is necessary to provide ΔΘ� = 0 equality from 
the definition. So, by making the necessary calculations in the following expression,  
 

 Θ(�, �) = (� + (, |cos�, I(�)(�jv)
J(�) + |sin�) 

 Θ(�, �) = (Θ�, Θ�, Θ�), 
 
the following equations can be written 
  

 ΔΘ�� = �RPQ
��R = 0, ΔΘ�� = �RPQ

��R = 0 

 ΔΘ� = 0; 
 ΔΘ�� = �RPR

��R = 0, ΔΘ�� = �RPR
��R = −|sin� 

 ΔΘ� = −|sin� = 0; 
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 ΔΘ�� = �RP6
��R = �Rm(���)�(�)

�(�) q
��R , ΔΘ�� = �RP6

��R = |cos� 

 ΔΘ� = �Rm(���)�(�)
�(�) q

��R + |cos� = 0. 
 
Hence, from the previous equations, respectively, one gets 
  

 −|sin� = 0 ⇒ � = ��, � ∈ ℤ 
or 

 
�Rm(���)�(�)

�(�) q
��R + |cos� = 0 ⇒ � = arccos �V�

�
�Rm(���)�(�)

�(�) q
��R �. 

 
 
4. Conclusion 

 
In this paper, the tube surfaces generated by rectifying curves are examined and some certain 
results according to the curvatures of the surfaces are presented in detail. Moreover, using the 
Gaussian and mean curvatures of tube surfaces generated by rectifying curve, it is possible to try 
and to express the conditions being linear Weingarten surfaces, �
 −quadric surface and 
harmonic. The authors are currently working on the properties of these tubular and canal surfaces 
with a view to devising suitable metric in 3-Galilean and 4-Galilean spaces by adapting the type of 
conservation laws considered in the paper. 
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