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Abstract 

This commentary clarifies the interpretation of the Gaussian random walk model of spacetime 

introduced in this journal [1]. 
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As conjectured in [1], at energies near or exceeding the Fermi scale ( )EWM , conventional space 

and time coordinates turn into statistical entities and create dynamic conditions falling outside 

the effective framework of Quantum Field Theory. In particular, the scaling of coordinates ( )X  

near or above EWM  is determined by the following probability distribution 
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The contribution of the cutoff function   becomes negligible when X  falls far below its cutoff 

value or L  , that is,  
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The key hypothesis of [1] is that the limit (3) of the power-law (2) reproduces the probability 

distribution of Gaussian random walks.  Our goal here is to further elaborate on this point 

following the philosophy of the Renormalization Group program. 

 

Consider a generic random walk in (2+1) spacetime dimensions having a constant step size 

commensurate with the magnitude of X . The probability distribution of this process replicates 

the power-law described by (1)-(3), namely [2]   
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where 
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Next, proceed to constructing the probability distribution for the coarse-grained step 
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in which 1n   is the overall number of steps. The coarse-grained probability distribution in 

2D   dimensions can be derived through the cumulant expansion method [2]. The result in the 

3+1 spacetime reads   
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which represents a standard Gaussian probability distribution with fractal (Hausdorff) dimension 

2
RW

D  .  

 

The takeaway point of this discussion is that, in the limit of exceedingly long random walks 

consisting of statistically independent steps, processes of the type (4) are reducible to Gaussian 

Random Walks. This is to say that space and time coordinates evolve according to the same 

probabilistic rules at large energies, graciously blending into the four-dimensional continuum of 

relativistic physics near or below 
EW

M .  

 

There is another way of phrasing this result. Assume that space and time are not integrated into 

spacetime but rather treated as individual random variables above 
EW

M . In this case, the fractal 

dimensions of space and time are unequal ( 1
RW

D  for time in one dimension and 2
RW

D   for 

two or three dimensional space). As a result, the locality principle expressed by (9) in [1] fails to 

hold because (10) is no longer equal to one. The unavoidable conclusion is that space and time 

must be joined into a single entity, the Minkowski spacetime of Special Relativity. 
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