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We explore the idea that three universal constants of theoretical physics ( , , Bh c k ) reflect the 
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1. Adiabatic invariants in Hamiltonian dynamics  

Consider a one-dimensional oscillator whose dynamics is expressed in terms of canonically 

conjugate variables ( , )q p . If the system is integrable, the energy is a constant of motion. The 

Hamiltonian is time-independent, the phase space orbit is a closed trajectory and both coordinate 

q  and momentum p  return to their starting values after each cycle. This scenario is no longer 

true if the Hamiltonian ( , , )H p q t  is weakly dependent on a perturbation parameter ( )t . In this 

case, the energy depends on time according to 

 ( ) ( , , ( ))E t H q p t   (1) 

Let us assume that ( )t  varies slowly and monotonically over many oscillation cycles of period 

S . By definition, the action-variable is described by [1-2]
1
 

 
1

( , ) ( , , )
2 C

S E p q E dq 


    (2) 

Analysis shows that  
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1
Hereafter, we denote the action variable by “ S ” instead of the notation “ I ” used in standard discussions 

of action-angle variables.   
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 0
d S

dt
   (3) 

The time-independence of S  is based on the approximation that terms of the order 

2( ) 1d dt   can be safely dropped. Condition (3) is a fundamental tenet of Hamiltonian 

dynamics and it states that, under the above assumptions, the action variable is an adiabatic 

invariant. The message it conveys is that the action can arbitrarily vary throughout the oscillation 

cycle, yet its average stays constant [1-2, 14]. 

A textbook example of adiabatic invariance is provided by the unperturbed harmonic oscillator 

with Hamiltonian 

 
2

2 2

0

1
( , )

2 2

p
H p q E m q

m
     (4) 

for which the action integral represents the invariant given by 

 
0

1

2

E
S pdq

 
    (5) 

Another classical example of adiabatic invariance is the variable-length pendulum, whose action 

is independent of the pendulum length ( l ) and reads [2-3] 

 
E

S


   (6) 

Relation (6) holds under the assumption that the change in length is slow and that the pendulum 

performs small-amplitude oscillations with frequency  .  

It is instructive to note that (6) ties in with the blackbody radiation problem that led Planck to the 

revolutionary discovery of quanta [3, 12]. In that problem, energy resonators confined in an 

cavity with volume  V  at equilibrium temperature T act as a collection of independent 

pendulums. The adiabatic contraction or expansion of the cavity yields an invariant similar to (6) 

given by  

 
0

nS
T


   (7) 

in which n n c L   is the resonator frequency and L  is the linear dimension of the cavity. 

Relations (6) and (7) lie at the foundation of the Wien-Planck scaling law for the radiation 

spectrum, namely, 
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 ( )n n

n

E
F

T




   (8) 

where the explicit solution of the functional F  led Planck to the idea of action quantization. The 

adiabatic invariant (6) enters the Bohr-Sommerfeld quantization rule for bounded periodic 

systems, which assumes the form 

 
1

2 C
S pdq n


    (9) 

Concerning (1)–(3), a sensible question to ask is: What happens if the perturbation ( )t  is not 

strictly monotonic but undergoes a slow sinusoidal oscillation of period S  ?. Since, by (3), 

the action variable can sustain instantaneous fluctuations that leaves the average unchanged, the 

overall dynamics of S  and   may be naturally understood as a system of coupled oscillators. In 

this general model,   is the “driver” oscillator whereas S  the “driven” oscillator, the latter 

becoming strictly time-invariant as 0  . Building this model from the ground up is the object 

of the next section. 

       

2. The quasiperiodic behavior of driven oscillators 

A convenient and often used representation of coupled oscillators is through the use of iterated 

maps of the unit interval [4]. Let the sinusoidal cycles  of   be described by the period   and 

the fluctuations of S  by a characteristic period S   . If the two oscillators are decoupled, the 

successive points of the so-called Poincaré map are given by [5-6] 

 ( )nS S t n     (10) 

 1 2n nS S       (11) 

or 

 1 2n nS S       (12) 

in which the “bare” winding number is the ratio 

 S






    (13) 

When there is coupling between S  and  , (12) turns into the sine circle map [6] 
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 1 2 sin ( )n n nS S K S       (14) 

which can be alternatively presented as  

 
1 ( )sin (2 )

2
n n n

K
  


     (15) 

Here, nN  is the iteration index, K  denotes the coupling strength and 

 2n nS    (16) 

The motion is deemed periodic and occurs on a two-dimensional torus in phase space if (13) is a 

ratio of rational numbers. Otherwise, the motion is quasiperiodic and is everywhere dense on the 

torus, in the sense that the trajectory returns arbitrarily close to its starting point an unbounded 

number of times. Moreover, the motion is also ergodic as long-term averages of motion on the 

torus equal area averages over the torus with uniform density [6].   

The winding number of the map (14) or (15) is defined as 

 0 0( ) lim lim
2

n n

n n

S S
W K

n n

 

 

 
    (17) 

and characterizes the average number of 2  rotations per iteration. It is important to note that 

(17) is different from (13) when 0K  . By contrast, ( 0)W K      when there is no coupling 

between S  and  , in which case (0)W  denotes the angular increment at each iteration step n .  

Analysis shows that the transition to chaos in either (14) or (15) relates to a sequence of 

irrational winding numbers  nW  that converges geometrically according to the series [6-7]  

 
n n

nW W c W c 
 

      (18) 

where the convergence rate is determined by the golden mean W  via  

 
2

W


   ,  
5 1

2
W


     (19) 

A similar scaling behavior holds for the sequence of bare winding numbers  n  and one finds, 

for a given 1K  ,  

 lim ( )n
n

K W


     (20) 
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Relations (18) – (20) reflect the approach to self-similar behavior of winding numbers (13) and 

(17) in the limit 1n  , that is, 

 
2

1

1

lim n n

n
n n

W







  
 

  
 ,   1K    (21) 

 
2

1

1

lim n n

n
n n

W W
W

W W








 


 ,   1K    (22) 

 

3. Emergence of Planck’s constant 

3.1 ) Consider first the case where 1 n   and the coupling strength is nearly-vanishing  

1K  . By (11) and (20) we obtain the first interpretation of action quantization in the form 

 1, 1 2n n n nS S S W       (23) 

Note that the condition 1K   is consistent with the separation of the high and low energy 

scales in effective Quantum Field Theory [8]. 

3.2) Next, consider again the case 1 n   and refer to (17)-(19). The second interpretation of 

action quantization assumes the form 

 ,0 0 (2 )n nS S S n W      (24) 

There is a couple of relevant observations concerning (23) and (24): 

a) It is apparent from (13) that 0  when S   and    . If, in addition, the 

coupling K  drops to zero in (14), the background perturbation becomes insignificant and 

one recovers the least-action principle of classical mechanics (
1, 0n nS    ). 

b) According to (23) and (24), Planck’s constant emerges as a fixed number related to the 

golden-mean. The precise numerical value of this constant is irrelevant as Planck’s constant 

can be set to 1  in natural units.  
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4. Universal constants from self-similarity   

The classical harmonic oscillator equation derived from (4) is given by ( 1m  ) 

 2

0 0q q    (25) 

By (5) and (9), the angular frequency 0  has the dimension of energy in natural units, which 

means         

  0 E   ,   ( 1 )   (26) 

A remarkable property of (25) is that it stays self-similar (covariant) under arbitrary scaling 

operations of the coordinate q  having the form q s q   with sR . Self-similarity is only 

possible if 0  is insensitive to scaling, which amounts to  

 0 0, s
s


  


R   (27) 

The requirement (27) is formally equivalent to demanding that (25) preserves its form upon 

multiplying 0  by a scalar independent of s , or 

 0 0     ,   R ,   ≠ s   (28) 

In light of the adiabatic invariance condition (5), (28) implies that   is also an adiabatic 

invariant whose presence has no effect on (25). This can be readily seen from (5), i.e. 

 
0 0

0

S E
  

  
   


  (29) 

Based on these remarks, it makes sense to attempt connecting  with the light speed in vacuo ( c

) and Boltzmann’s constant ( )Bk , respectively. Towards this end, let us first consider the wave 

equation for a monochromatic electromagnetic field in the vacuum [9] 

 
2

0

2
0f f

c


     (30) 
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where f  is either one of the vector components of the field, f   ( ,E H ). Since (30) shares the 

same form with (25), with the second time derivative replaced by the Laplacian, comparative 

inspection of (28)-(29) and (30) yields the electromagnetic adiabatic invariant 

 1
EM c

    (31) 

Turning next to the Boltzmann’s constant, we again refer to (5) and write it as   

 
0

0 2

E E
S 

 
    (32) 

It is known that the quantum mechanical amplitude is the integral over all paths weighted by iSe

. The technique of Wick rotation enables conversion from 
iSe to the Euclidean weight ES

e
  via 

the concept of Euclidean time Et  defined as [8] 

 , 0E Et it t     (33) 

It is also known that Euclidean time relates to the canonical temperature parameter via 

 
1

E

B

t
k T

    (34) 

On account of (33) and (34), (32) yields 

 
2

E

B

E
S

k T
   (35) 

It is apparent from (6)-(8) that energy, frequency, and temperature are interchangeable concepts 

with the same dimension in natural units. Hence, by (28) and (35) we obtain 

 
0 02 2

E

B

E E E
S

k T    
  

 
  (36) 

which leads to the Boltzmann adiabatic invariant 

 B Bk    (37) 

 

5. Open questions 
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We caution the reader that our analysis is strictly tentative and requires independent scrutiny and 

validation. Here is a sample of questions open for further clarification: 

1) The approach appears to work for massless oscillations in the classical vacuum, that is, 

for free radiation modes. One needs to explain why collective excitations in condensed 

matter and plasma physics are exempt and do not lead to universal constants. 

2)  Not all adiabatic invariants generate universal constants. Two prime examples are the 

magnetic moment of a gyrating particle in a magnetic field, as well as the longitudinal 

invariant of a particle trapped in a magnetic mirror [10-11]. 

3) Can Newton’s constant be linked to a similar treatment? [13].  

4) What fixes the particular values for   defined by (31) and (37)? The onset of Lorentz 

symmetry (in particular, the boost invariance of “c” among inertial frames) may explain 

(31). Likewise, the key conjecture of statistical physics that all configurations of a 

thermodynamic system with the same energy are equally probable, may justify (37). 
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