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Abstract

Ramified primes are special in the sense that their expression as a product of primes Pi of ex-
tension contains higher than first powers and the number Pi is smaller than the maximal number n
defined by the dimension of the extension. The proposed interpretation of ramified primes is as p-adic
primes characterizing space-time sheets assignable to elementary particles and even more general sys-
tems. It is not quite clear why ramified primes appear as preferred p-adic primes and in the following
Dedekind zeta functions and what I call ramified zeta functions inspired by the interpretation of zeta
function as analog of partition function are used in attempt to understand why ramified primes could
be physically special. The intuitive feeling is that quantum criticality is what makes ramified primes
so special. In O(p) = 0 approximation the irreducible polynomial defining the extension of rationals
indeed reduces to a polynomial in finite field Fp and has multiple roots for ramified prime, and one
can deduce a concrete geometric interpretation for ramification as quantum criticality using M8 −H
duality.

Keywords: Ramified primes, elementary particle, zeta function, quantum criticality, TGD frame-
work.

1 Introduction

Ramified primes (see http://tinyurl.com/m32nvcz and http://tinyurl.com/y6yskkas) are special in
the sense that their expression as a product of primes of extension contains higher than first powers and
the number of primes of extension is smaller than the maximal number n defined by the dimension of the
extension. The proposed interpretation of ramified primes is as p-adic primes characterizing space-time
sheets assignable to elementary particles and even more general systems.

In the following Dedekind zeta functions (see http://tinyurl.com/y5grktvp) as generalization of
Riemann zeta [6, 7] are studied to understand what makes them so special. Dedekind zeta function
characterizes given extension of rationals and is defined by reducing the contribution from ramified reduced
so that effectively powers of primes of extension are replaced with first powers.

If one uses the naive definition of zeta as analog of partition function and includes full powers P ei
i ,

the zeta function becomes a product of Dedekind zeta and a term consisting of a finite number of factors
having poles at imaginary axis. This happens for zeta function and its fermionic analog having zeros
along imaginary axis. The poles would naturally relate to Ramond and N-S boundary conditions of
radial partial waves at light-like boundary of causal diamond CD. The additional factor could code for
the physics associated with the ramified primes.

The intuitive feeling is that quantum criticality is what makes ramified primes so special. In O(p) = 0
approximation the irreducible polynomial defining the extension of rationals indeed reduces to a polyno-
mial in finite field Fp and has multiple roots for ramified prime, and one can deduce a concrete geometric
interpretation for ramification as quantum criticality using M8 −H duality.

This article is one in a series of articles related to the number theoretical aspects of TGD. M8 −H
duality central concept in following and discussed in [5, 10, 8, 9] [3]. Also the notion of cognitive repre-
sentation as a set of points of space-time surface with preferred imbedding space coordinates belonging
to the extension of rationals defining the adele [2] is important and discussed in [12, 11, 14].
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2 Dedekind zeta function and ramified primes

One can take mathematics and physical intuition guided by each other as a guideline in the attempts to
understand ramified primes.

1. Riemann zeta can be generalized to Dedekind zeta function ζK for any extension K of rationals
(see http://tinyurl.com/y5grktvp). ζK characterizes the extension - maybe also physically in
TGD framework since zeta functions have formal interpretation as partition function. In the recent
case the complexity is not a problem since complex square roots of partition functions would define
the vacuum part of quantum state: one can say that quantum TGD is complex square root of
thermodynamics.

ζK satisfies the same formula as ordinary zeta expect that one considers algebraic integers in the
extensions K and sums over non-zero ideals a - identifiable as integers in the case of rationals - with
n−s replaced with N(a)−s, where N(a) denotes the norm of the non-zero ideal. The construction
of ζK in the extension of rationals obtained by adding i serves as an illustrative example (see
http://tinyurl.com/y563wcwv). I am not a number theorists but the construction suggests a
poor man’s generalization strongly based on physical intuition.

2. The rules would be analogous to those used in the construction of partition function. log(N(a)) is
analogous to energy and s is analogous to inverse temperature so that one has Boltzmann weight
exp(−log(N(a)s) for each ideal. Since the formation of ideals defined by integers of extension is
analogous to that for forming many particle states labelled by ordinary primes and decomposing
to primes of extension, the partition function decomposes to a product over partition functions
assignable to ordinary primes just like in the case of Riemann zeta. Let K be an extension of
rationals Q.

3. Each rational prime p decomposes in the extension as p =
∏

i=1,...g P
ei
i , where n is the dimension

of extension and ei is the ramification degree. Let fi be so called residue degree of Pi defined as
the dimension of K mod Pi interpreted as extension of rational integers Z mod p. Then one has∑g

1 eifi = n.

Remark: For Galois extensions for which the order of Galois group equals to the dimension n of
the extension so that for given prime p one has ei = e and fi = f and efg = n.

4. Rational (and also more general) primes can be divided into 3 classes with respect to this decom-
position.

For ramified primes dividing the discriminant D associated with the polynomial (D = b2 − 4c for
P (x) = x2 + bx + c) one has ei > 1 at least for one i so that fi = 0 is true at least for one
index. A simple example is provided by rational primes (determined by roots of P (x) = x2 + 1 with
discriminant −4): in this case p = 2 corresponds to ramified prime since on has (1 + i)(1 − i) = 2
and 1 + i and 1− i differ only by multiplication by unit −i.

5. Split primes have n factors Pi and thus have (ei = 1, fi = 1, g = n) . They give a factor (1−p−s)−n.
The physical analogy is n-fold degenerate state with original energy energy nlog(p) split to states
with energy log(p).

Inert primes are also primes of extension and there is no splitting and one has (e1 = e = 1, g =
1, f1 = f = n). In this case one obtains factor 1/(1 − p−ns). The physical analogy is n-particle
bound state with energy nlog(p).

6. For ramified primes the situation is more delicate. Generalizing from the case of Gaussian primes
Q[i] (see http://tinyurl.com/y563wcwv) ramified primes pR would give rise to a factor
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g∏
i=1

1

1− p−fisR

.

g is the number of distinct ideals Pi in the decomposition of p to the primes of extension.

For Gaussian primes p = 2 has g = 1 since one can write (2) = (1+ i)(1− i) ≡ (1+ i)2. This because
1 + i and 1− i differ only by multiplication with unit −i and thus define same ideal in Q[i]. Only
the number g of distinct factors Pi in the decomposition of p matters.

One could understand this as follows. For the roots of polynomials ramification means that several
roots co-incide so that the number of distinct roots is reduced. ei > 1 is analogous to the number co-
inciding roots so that number if distinct roots would be 1 instead of ei. This would suggests ki = 1
always. For ramified primes the number of factors Zp the number

∑g
i=1 fiki = n for un-ramified

case would reduce from to
∑g

i=1 fiki = nd, which is the number of distinct roots.

7. Could the physical interpretation be that there are g types of bound states with energies filog(p)
appearing with degeneracy ei = 1 both in ramified and split case. This should relate to the fact that
for ramified primes p L/p contains non-vanishing nilpotent element and is not counted. One can also
say that the decomposition to primes of extension conserves energy:

∑
i=1,...,g eifilog(p) = ndlog(p).

For instance, for Galois extensions (ei = e, fi = f, g = nd/ef) for given p the factor is 1/(1−p−es)fg:
efg = nd. If there is a ramification then all Pi are ramified. Note that e, f an g are factors of nd.

8. One can can extract the factor 1/(1 − p−s) from each of the 3 contributions and organize these
factors to give the ordinary Riemann zeta. The number of ramified primes is finite whereas the
numbers of split primes and inert primes are infinite. One can therefore extract from ramified
primes the finite product

ζ1R,K =
∏

pR
(1− p−sR )× ζ2R,K , ζ2R,K =

∏
pR

[
∏g

i=1
1

1−p−fis
] .

One can organize the remaining part involving infinite number of factors to a product of ζ and
factors (1− p−s)/(1−

∏
p−s))n and (1− p−s)/(1− p−ns) giving rise to zeta function -call it ζsi,K -

characterizing the extension. Note that ζ2R,K has interpretation as partition function and has pole
of order nd at origin.

One therefore can write the ζL as

ζK = ζ1R,K × ζsi,K × ζ .

where ζsi,K is the contribution of split and inert primes multiplied by (1− p−s)

ζL has pole only at s = 1 and it carries in no obvious manner information about ramified primes. The
naive guess for ζL would be that also ramified primes pR would give rise to a factor

g∏
i=1

1

(1− p−fisR )ei
.

One could indeed argue that at the limit when ei prime ideals Pi of extension co-incide, one should obtain
this expression. The resulting ζ function would be product

ζnaive,K = ζR,KζK , ζR,K =
∏

pR
X(pR)

X(pR) =
∏g

i=1
1

(1−p−fis

R )ei−1
.
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Note that the parameters ei, fi, g depend on pR and that for Galois extensions one has ei = d, fi = f for
given pR. ζR,L would have poles at along imaginary axis at points s = −n2π/log(p). Ramified primes
would give rise to poles along imaginary axis. As far as the proposed physical interpretation of ramified
primes is considered, this form looks more natural.

2.1 Fermionic counterparts of Dedekind zeta and ramified ζ

One can look the situation also for the generalization of fermionic zeta as analog of fermionic partition
function, which for rationals has the expression

ζF (s) =
∏
p

(1 + p−s) =
ζ(s)

ζ(2s)
.

Supersymmetry of supersymmetric arithmetic QFT suggest the product of fermionic and bosonic zetas.
Also the supersymmetry of infinite primes for which first level of hierarchy corresponds to irreducible
polynomials suggests this. On the other hand, the appearance of only fermions as fundamental particles
in TGD forces to ask whether the ramified part of fermionic zeta might be fundamental.

1. By an argument similar to used for ordinary zeta based on interpretation as partition function,
one obtains the decomposition of the fermionic counterpart of ζFK Dirichlet zeta to a product ζFK =
ζFR,Kζ

F
si,Kζ

F of ramified fermionic zeta ζFR,K , ζFsi,K , and ordinary fermionic zeta ζF . The basic rule

is simple: replace factors 1/(1 − p−ks appearing in ζK with (1 + p−ks) in ζFK and extract ζF from
the resulting expression. This gives

ζF,1
R,K =

∏
pR

(1− p−sR )ζFR,K , ζFR,K =
∏

pR
[
∏g

i=1(1 + p−fisR )] .

where pR is ramified prime dividing the discriminant. ζFR,K is analogous to a fermionic partition
function for a finite number of modes defined by ramified primes pR of extension.

2. Also now one can wonder whether one should define ζFK as a product in which ramified primes give
factor

∏
pR

[

g∏
i=1

(1 + p−fisR )ei ]

so that one would have

ζFnaive,K = ζFR,Kζ
F
K , ζFR =

∏
pR
Y (pR) ,

Y (pR) =
∏g

i=1(1 + p−fisR )ei−1

ζF (naive,K) would have zeros along imaginary axis serving as signature of the ramified primes.

2.2 About physical interpretation of ζR,K and ζFR,K

ζR,K and ζFR,K are attractive from the view point of number theoretic vision and the idea that ramified
primes are physically special. TGD Universe is quantum critical and in catastrophe theory the ramification
for roots of polynomials is analogous to criticality. Maybe the ramification for p-adic primes makes them
critical. K/(pR) has nilpotent elements, which brings in mind on mass shell massless particles.
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1. ζR,K has poles at

s = i
2nπ

log(p)fi

and psR = exp(in2π/fi) is a root of unity, which conforms with the number theoretical vision. Only
Pi with ei > 1 contribute.

2. ZF
R,K has zeros

s = i
(2n+ 1)π

log(p)fi

and psR = exp(i(2n+ 1)π/fi) is a root of unity. Zeros are distinct from the poles of ZR,K .

3. The product ζR,tot,K = ζR,Kζ
F
R,K has the poles and zeros of ζR,K and ζFR,K . In particular, there is

n:th order pole of ZR,K at s = 0. The zeros of zF,K along imaginary axis at piy = −1 also survive
in ζR,tot,K .

ζFR,K has only zeros and since fundamental fermions are primary fields in TGD framework, one
could argue that only it carries physical information. On the other hand, supersymmetric arithmetic
QFT [1] and the fact that TGD allows SUSY [13] suggests that the product ζR,K × ZF

R,K is more
interesting.

From TGD point of view the ramified zeta functions ζR,K , ζFR,K and their product ζR,K × ζFR,K look
interesting.

1. ζR,K behaves like s−nd , nd =
∑g

1(ei−1) near the origin. Could nd-fold pole at s = 0 be interpreted
in terms of a massless state propagating along light-cone boundary of CD in radial direction? This
would conform with the proposal that zeros of zeta correspond to complex radial conformal weights
for super-symplecti algebra. That ramified primes correspond to massless particles would conform
with the identification of ramified prime as p-adic primes labelling elementary particles since in
ZEO their mass would result from p-adic thermodynamics from a mixing with very massive states
[9].

Besides this there would be stringy spectrum of real conformal weights along negative real axis and
those coming as non-trivial zeros and these could correspond to ordinary conformal weights.

2. The zeros of ζFR,K along imaginary axis might have interpretation as eigenvalues of Hamiltonian in
analogy with Hilbert-Polya hypothesis. Maybe also the poles of ζR,K could have similar interpre-
tation. The real part of zero/pole would not produce troubles (on the other hand, for waves along
light-cone boundary it can be however absorbed to the integration measure.

3. A possible physical interpretation of the imaginary conformal weights could be as conformal weights
associated with radial waves assignable to the radial light-like coordinate r of the light-cone bound-
ary: r indeed plays the role of complex coordinate in conformal symmetry in the case of super-
symplectic algebra suggested to define the isometries of WCW. Poles and zero could correspond to
radial modes satisfying periodic/anti-periodic boundary conditions.

The radial conformal weights s defined by the zeros of ζFR,K would be number theoretically natural

since one could pose boundary condition pis(r/r0) = −1 at r = r0 requiring pis = −1 at the corner
of cd (maximum value of r in CD = cd× CP2.

For the poles of ζR,K the periodic boundary condition pis(r/r0) = 1 is natural. The two boundary
conditions could relate to Ramond an N-S representations of super-conformal algebras (see http:
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//tinyurl.com/y49y2ouj). With this interpretation s = 0 would correspond to a radial plane-
wave constant along light-like radial direction and therefore light-like momentum propagating along
the boundary of CD. Other modes would correspond to other massless modes propagating to the
interior of CD.

4. I have earlier considered an analogous interpretation for a subset zeros of zeta satisfying similar
condition. The idea was that for given prime p as subset of s = 1/2 + iyi of non-trivial zeros ζ
ps = p1/2+iyi is an algebraic number so that piyi would be a root of unity. Zeros would decompose
to subsets labelled by primes p. Also for trivial zeros of ζ (and also poles) the same holds true
as for the zeros and poles ζR. This encourages the conjecture that the property is true also for
L-functions.

The proposed picture suggests an assignment of ”energy” E = nlog(p) to each prime and separation
of ”ramified” energy Ed = ndlog(p), nd =

∑g
1 fi(ei − 1), to each ramified prime. The interpretation

as partition function suggests that that one has g types of states of fi identical particles and energy
Ei = filog(p) and that this state is ei-fold degenerate with energies Ei = filog(p). For inert primes one
would have fi = f = n. For split primes one would have ei = 1, fi = 1. In case of ramified primes one
can separate one of these states and include it to the Dedekind zeta.

2.3 Can one find a geometric correlate for the picture based on prime ideals?

If one could find a geometric space-time correlate for the decomposition of rational prime ideals to prime
ideals of extensions, it might be also possible to understand why quantum criticality makes ramified
primes so special physically and wha this means.

What could be correlate for fi fundamental fermions behaving like single unit and what degeneracy
for ei > 1 does mean? One can look the situation first at the level of number fields Q and K and
corresponding Galois group Gal(K/Q), finite fields F = Q/p and Fi = K/Pi, and corresponding Galois
group Gal(Fi/F ). Appendix summarizes the basic terminology.

1. Inertia degree fi is the number of elements of Fi/Fp (Fi = K/Pi is extension of finite field Fp = Q/p).
The Galois group Gal(Fi/Fp) is identifiable as factor group Di/Ii, where the decomposition group
Di is the subgroup of Galois group taking Pi to itself and the inertia group Ii leaving Pi point-
wise invariant. The orbit under Gal(Fi/Fp) in Fi/Fp would behave like single particle with energy
Ei = filog(p).

For inert primes with fi = n inertia group would be maximal. For split primes the orbits of ideals
would consist of fi = 1 points only and isotropy group would be trivial.

2. Ramification for primes corresponds intuitively to that for polynomials meaning multiple roots as
is clear also from the expression p =

∏
P ei
i . In accordance with the intuition about quantum

criticality, ramification means that the irreducible polynomial reduced to a reducible polynomial
in finite field Q/p has therefore a multiple roots with multiplicities ei (see Appendix). For Galois
extensions one has (ei = e, fi = f) Criticality would be seen at the level of finite field Fp = Q/p
associated with ramified prime p.

The interpretation of roots of corresponding octonionic polynomials as n-sheeted covering space like
structures encourages to ask whether the independent tensor factors labelled by i suggested by the inter-
pretation as a partition function could be assigned with the sheets of covering so that ramification with
ei > 1 would correspond to singular points of cognitive representation for which ei sheets co-incide in
some sense, maybe in finite field approximation (O(p) = 0). Galois groups indeed act on the coordinates
of point of cognitive representation belonging to the extension K. In general the action does not take the
point to a point belonging to a cognitive representation but one can consider quantum superpositions of
cognitive representations.
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This suggests an interpretation in terms of space-time surfaces accompanied by cognitive represen-
tation under Galois group. Quantum states would be superpositions of preferred extremals at orbits of
Galois group and for cognitive representations the situation would be discrete.

1. To build a concrete connection between geometric space-time picture and number theoretic picture,
one should find geometric counterparts of integers, ideals, and prime ideals. The analogs of prime
ideals should be associated with the discretizations of space-time surfaces/cognitive representations
in O(p) = 0 or O(Pi) = 0 approximation. Could one include only points of cognitive representations
differing from zero in O(p) = 0 approximation and form quantum states as quantum superpositions
of these points of cognitive representation?

in O(p) = 0 approximation and for ramified primes irreducible polynomials would have multiple
roots so that ei sheets would co-incide at these points in O(p) = 0 approximation. Th conjecture
that elementary particles correspond to this kind of singularities has been speculated already earlier
with inspiration coming from quantum criticality.

2. In M8 picture the octonionic polynomials obtained as continuation of polynomials with rational
coefficients would be reduced to polynomials in finite field Fp. One can study corresponding discrete
algebraic surfaces as discrete approximations of space-time surfaces.

3. One would like to have only single imbedding space coordinate since the probability that all imbed-
ding space coordinates correspond to the same Pi is small. M8 −H duality reduces the number of
imbedding space coordinates characterizing partonic 2-surfaces containing vertices for fundamental
fermions to single one identifiable as time coordinate.

At the light-like boundary of 8-D CD in M8 the vanishing condition for the real or imaginary part
(quaternion) of octonionic polynomial P (o) reduces to that for ordinary polynomial, and one obtains
n roots rn, which correspond to the values of M4 time t = rn defining 6-spheres as analogs of branes.
Partonic 2-surfaces corresponde to intersections of 4-D roots of P (o) at partonic 2-surfaces. Galois
group of the polynomial naturally acts on rn labelling these partonic 2-surfaces by permuting them.
One could form representations of Galois group using states identified as quantum superpositions of
these partonic 2-surfaces corresponding to different values of t = rn. Galois group leaves invariant
the degenerate roots t = rn.

4. The roots can be reduced to finite field Fp or K/Pi. Ramification would take place in this approx-
imation and mean that ei roots t = rn are identical in O(p) = 0 approximation. ei time values
t = rn would nearly co-incide. This gives more concrete contents to the statement of TGD inspired
theory of consciousness that these time values correspond to very special moments in the life of self.
Since this is the situation only approximately, one can argue that one must indeed count each root
separately so that partition function must be defined as product of the contribution form ramified
primes an Dedekind zeta.

The assignment of fundamental fermions to the points of cognitive representations at partonic 2-
surfaces assignable to the intersections of 4-D roots and universal 6-D roots of octonionic polynomials
(brane like entities) conforms with this picture.

5. The analogs of 6-branes would give rise to additional degrees of freedom meaning effectively discrete
non-determinism. I have speculated with this determinism with inspiration coming from the original
identification of bosonic action as Kähler action having huge 4-D spin glass degeneracy. Also the
number theoretic vision suggest the possibility of interpreting preferred extremals as analogs of
algebraic computations such that one can have several computations connecting given states [4]. The
degree n of polynomial would determine the number of steps and the degeneracy would correspond
to n-fold degeneracy due to the discrete analogs of plane waves in this set.
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2.4 What extensions of rationals could be winners in the fight for survival?

It would seem that the fight for survival is between extensions of rationals rather than individual primes
p. Intuition suggests that survivors tend to have maximal number of ramified primes. These number
theoretical speciei can live in the same extension - to ”co-operate”.

Before starting one must clarify some basic facts about extensions of rationals.

1. Extension of rationals are defined by an irreducible polynomial with rational coefficients. The roots
give n algebraic numbers which can be used as a basis to generate the numbers of extension ast their
rational linear combinations. Any number of extension can be expressed as a root of an irreducible
polynomial. Physically it is is of interest, that in octonionic picture infinite number of octonionic
polynomials gives rise to space-time surface corresponding to the same extension of rationals.

2. One can define the notion of integer for extension. A precise definition identifies the integers
as ideals. Any integer of extension are defined as a root of a monic polynomials P (x) = xn +
pn−1x

n−1xn−1 + ... + p0 with integer coefficients. In octonionic monic polynomials are subset of
octonionic polynomials and it is not clear whether these polynomials could be all that is needed.

3. By definition ramified primes divide the discriminant D of the extension defined as the product D =∏
i 6=j(ri − rj) of differences of the roots of (irreducible) monic polynomial with integer coefficients

defining the basis for the integers of extension. Discriminant has a geometric interpretation as
volume squared for the fundamental domain of the lattice of integers of the extension so that at
criticality this volume interpreted as p-adic number would become small for ramified primes an
vanish in O(p) approximation. The extension is defined by a polynomial with rational coefficients
and integers of extension are defined by monic polynomials with roots in the extension: this is not
of course true for all monic polynomials polynomial (see http://tinyurl.com/k3ujjz7).

4. The scaling of the n − 1-tuple of coefficients (pn−1, ....., p1) to (apn−1, a
2pn−1....., a

np0) scales the
roots by a: xn → axn. If a is rational, the extension of rationals is not affected. In the case of
monic polynomials this is true for integers k. This gives rational multiples of given root.

One can decompose the parameter space for monic polynomials to subsets invariant under scalings
by rational k 6= 0. Given subset can be labelled by a subset with vanishing coefficients {pik}. One
can get rid of this degeneracy by fixing the first non-vanishing pn−k to a non-vanishing value, say 1.
When the first non-vanishing pk differs from p0, integers label the polynomials giving rise to roots
in the same extension. If only p0 is non-vanishing, only the scaling by powers kn give rise to new
polynomials and the number of polynomials giving rise to same extension is smaller than in other
cases.

Remark: For octonionic polynomials the scaling symmetry changes the space-time surface so that
for generic polynomials the number of space-time surfaces giving rise to fixed extension is larger
than for the special kind polynomials.

Could one gain some understanding about ramified primes by starting from quantum criticality? The
following argument is poor man’s argument and I can only hope that my modest technical understanding
of number theory does not spoil it.

1. The basic idea is that for ramified primes the minimal monic polynomial with integer coefficients
defining the basis for the integers of extension has multiple roots in O(p) = 0 approximation, when
p is ramified prime dividing the discriminant of the monic polynomial. Multiple roots in O(p) = 0
approximation occur also for the irreducible polynomial defining the extension of rationals. This
would correspond approximate quantum criticality in some p-adic sectors of adelic physics.

2. When 2 roots for an irreducible rational polynomial co-incide, the criticality is exact: this is true
for polynomials of rationals, reals, and all p-adic number fields. One could use this property to
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construct polynomials with given primes as ramified primes. Assume that the extension allows an
irreducible olynomial having decomposition into a product of monomials = x − ri associated with
roots and two roots r1 and r2 are identical: r1 = r2 so that irreducibility is lost.

The deformation of the degenerate roots of an irreducible polynomial giving rise to the extension
of rationals in an analogous manner gives rise to a degeneracy in O(p) = 0 approximation. The
degenerate root r1 = r2 can be scaled in such a manner that the deformation r2 = r1(1 + q)),
q = m/n = O(p) is small also in real sense by selecting n >> m.

If the polynomial with rational coefficients gives rise to degenerate roots, same must happen also
for monic polynomials. Deform the monic polynomial by changing (r1, r2 = r1) to (r1, r1(1 + r)),
where integer r has decomposition r =

∏
i p

ki
i to powers of prime. In O(p) = 0 approximation the

roots r1 and r2 of the monic polynomial are still degenerate so that pi represent ramified primes.

If the number of pi is large, one has high degree of ramification perhaps favored by p-adic evolution
as increase of number theoretic co-operation. On the other hand, large p-adic primes are expected
to correspond to high evolutionary level. Is there a competition between large ramified primes and
number of ramified primes? Large heff/h0 = n in turn favors large dimension n for extension.

3. The condition that two roots of a polynomial co-incide means that both polynomial P (x) and its
derivative dP/dx vanish at the roots. Polynomial P (x) = xn + pn−1x

n−1 + ..p0 is parameterized
by the coefficients which are rationals (integers) for irreducible (monic) polynomials. n − 1-tuple
of coefficients (pn−1, ....., p0) defines parameter space for the polynomials. The criticality condition
holds true at integer points n − 1 − D surface of this parameter space analogous to cognitive
representation.

The condition that critical points correspond to rational (integer) values of parameters gives an
additional condition selecting from the boundary a discrete set of points allowing ramification.
Therefore there are strong conditions on the occurrence of ramification and only very special monic
polynomials are selected.

This suggests octonionic polynomials with rational or even integer coefficients, define strongly criti-
cal surfaces, whose p-adic deformations define p-adically critical surfaces defining an extension with
ramified primes p. The condition that the number of rational critical points is non-vanishing or
even large could be one prerequisite for number theoretical fitness.

4. There is a connection to catastrophe theory, where criticality defines the boundary of the region of
the parameter space in which discontinuous catastrophic change can take place as replacement of
roots of P (x) with different root. Catastrophe theory involves polynomials P (x) and their roots as
well as criticality. Cusp catastrophe is the simplest non-trivial example of catastrophe surface with
P (x) = x4/4 − ax − bx2/2: in the interior of V-shaped curve in (a, b)-plane there are 3 roots to
dP (x) = 0, at the curve 2 solutions, and outside it 1 solution. Note that now the parameterization
is different from that proposed above. The reason is that in catastrophe theory diffeo-invariance is
the basic motivation whereas in M8 there are highly unique octonionic preferred coordinates.

If p-adic length scale hypothesis holds true, primes near powers of 2, prime powers, in particular
Mersenne primes should be ramified primes. Unfortunately, this picture does not allow to say anything
about why ramified primes near power of 2 could be interesting. Could the appearance of ramified primes
somehow relate to a mechanism in which p = 2 as a ramified prime would precede other primes in the
evolution. p = 2 is indeed exceptional prime and also defines the smallest p-adic length scale.

For instance, could one have two roots a and a + 2k near to each other 2-adically and could the
deformation be small in the sense that it replaces 2k with a product of primes near powers of 2: 2k =∏

i 2ki →
∏

i pi, pi near 2ki? For the irreducible polynomial defining the extension of rationals, the
deforming could be defined by a → a + 2k could be replaced by a → a + 2k/N such that 2k/N is small
also in real sense.
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3 Appendix: About the decomposition of primes of number field
K to primes of its extension L/K

The followings brief summary lists some of the basic terminology related to the decomposition of primes
of number field K in its extension.

1. A typical problem is the splitting of primes of K to primes of the extension L/K which has been
already described. One would like to understand what happens for a given prime in terms of
information about K. The splitting problem can be formulated also for the extensions of the local
fields associated with K induced by L/K.

2. Consider what happens to a prime ideal p of K in L/K. In general p decomposes to product
p =

∏g
i=1 P

ei
i of powers of prime ideals Pi of L. For ei > 1 ramification is said to occur. The finite

field K/p is naturally imbeddable to the finite field L/Pj defining its extension. The degree of the
residue field extension (L/Pi)/(K/p) is denoted by fi and called inertia degree of Pi over p. The
degree of L/K equals to [L : K] =

∑
eifi.

If the extension is Galois extension (see http://tinyurl.com/zu5ey96), one has ei = e and fi = f
giving [L : K] = efg. The subgroups of Galois group Gal(L/K) known as decomposition group Di

and inertia group Ii are important. The Galois group of Fi/F equals to Di/Ii.

For Galois extension the Galois group Gal(L/K) leaving p invariant acts transitively on the fac-
tors Pi permuting them with each other. Decomposition group Di is defined as the subgroup of
Gal(L/K) taking Pi to itself.

The subgroup of Gal(L/K) inducing identity isomorphism of Pi is called inertia group Ii and is
independent of i. Ii induces automorphism of Fi = L/Pi. Gal(Fi/F ) is isomorphic to Di/Ii. The
orders of Ii and Di are e and ef respectively. The theory of Frobenius elements identifies the
element of Gal(Fi/F ) = Di/Ii as generator of cyclic group Gal(Fi/F ) for the finite field extension
Fi/F . Frobenius element can be represented and defines a character.

3. Quadratic extensions Q(
√
n) are simplest Abelian extensions and serve as a good starting point

(see http://tinyurl.com/zofhmb8) the discrimant D = n for p mod 4 = 1 and D = 4n otherwise
characterizes splitting and ramification. Odd prime p of the extension not dividing D splits if
and only if D quadratic residue modulo p. p ramifies if D is divisible by p. Also the theorem by
Kronecker and Weber stating that every Abelian extension is contained in cyclotomic extension of
Q is a helpful result (cyclotonic polynomials has as it roots all n roots of unity for given n)

Even in quadratic extensions L of K the decomposition of ideal of K to a product of those of extension
need not be unique so that the notion of prime generalized to that of prime ideal becomes problematic.
This requires a further generalization. One ends up with the notion of ideal class group (see http:

//tinyurl.com/hasyllh): two fractional ideals I1 and I2 of L are equivalent if the are elements a and b
such that aI1 = bI2. For instance, if given prime of K has two non-equivalent decompositions p = π1π2
and p = π3π4 of prime ideal p associated with K to prime ideals associated with L, then π2 and π3 are
equivalent in this sense with a = π1 and b = π4. The classes form a group JK with principal ideals defining
the unit element with product defined in terms of the union of product of ideals in classes (some products
can be identical). Factorization is non-unique if the factor JK/PK - ideal class group - is non-trivial group.
Q(
√
−5) gived a representative example about non-unique factorization: 2 × 3 = (1 +

√
−5)(1 −

√
−5)

(the norms are 4× 9 and 6× 6 for the two factorizations so that they cannot be equivalent.
This leads to class field theory (see http://tinyurl.com/zdnw7j3 and http://tinyurl.com/z3s4kjn).

1. In class field theory one considers Abelian extensions with Abelian Galois group. The theory
provides a one-to-one correspondence between finite abelian extensions of a fixed global field K and
appropriate classes of ideals of K or open sub-groups of the idele class group of K. For example,
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the Hilbert class field, which is the maximal unramified abelian extension of K, corresponds to a
very special class of ideals for K.

2. Class field theory introduces the adele formed by reals and p-adic number fields Qp or their exten-
sions induced by algebraic extension of rationals. The motivation is that the very tough problem
for global field K (algebraic extension of rationals) defines much simpler problems for the local
fields Qp and the information given by them allows to deduce information about K. This because
the polynomials of order n in K reduce effectively to polynomials of order n mod pk in Qp if the
coefficients of the polynomial are smaller than pk. One reduces monic irreducible polynomial f
characterizing extension of Q to a polynomial in finite field Fp. This allows to find the extension
Qp induced by f .

An irreducible polynomial in global field need not be irreducible in finite field and therefore can have
multiple roots: this corresponds to a ramification. One identifies the primes p for which complete
splitting (splitting to first ordinary monomials) occurs as unramified primes.

3. Class field theory also includes a reciprocity homomorphism, which acts from the idele class group of
a global field K, i.e. the quotient of the ideles by the multiplicative group of K, to the Galois group
of the maximal abelian extension of K. Wikipedia article makes the statement ”Each open subgroup
of the idele class group of K is the image with respect to the norm map from the corresponding class
field extension down to K”. Unfortunately, the content of this statement is difficult to comprehend
with physicist’s background in number theory.
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