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A Primordial Space-time Metric 
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Abstract 

Pre-space-time reality is modeled as a primordial field, a matterless continuum or superfluid, in 

which local field energy is effectively limitless.  Super-fluids are characterized by vorticity

b  where b
r

 is magnetic-like: 0 b , Ab  . The problem of pre-space-time 

modeling is the evolution of the system: Unlike the Schwarzschild static solution )21(00 g , 

the pre-space-time metric must evolve with time.  The Horizon Problem seeks to explain the 

isotropy of the universe based on inflation models wherein separate regions of the universe are 

never in contact; therefore a solution should hold at arbitrary points in the field.  In this paper, I 

construct the physics of ijh  for a dynamic spatially homogeneous anisotropic Bianchi vacuum 

model that exactly solves Einstein's equations in terms of the physically real primordial field. 
 

Keywords: Primordial field, spacetime metric, prespacetime, superfluid, horizon problem, 

universe, gravitation. 
 

 

[U]nlike all other fields in nature which live in space-time, in essence 

the gravitational field is space-time.”Cooperstock GRF-2017 
 

Introduction 
 

The Cosmological Principle is a generalization of the Copernican Principle that Earth is not the 

center of the solar system; leading to the requirement of both isotropic and homogeneous 

universe.  In reality there are few grounds to support the cosmological principle
 10

; it is rather a 

cultural response to the historically significant rejection of Earth as center, designed to preempt 

physicists from making the same mistake on a larger scale.  Homogeneity and isotropy are 

statistically 'smeared' as they obviously fail on smaller scales.  At a larger scale the cosmic 

microwave background provides support for isotropy, however there are experimental and theo-

retical grounds for investigating different models.  D'Inverno notes
 6

 that "calculations of stat-

istical fluctuations in Friedmann models suggest that they cannot collapse fast enough to form 

the observed galaxies."  The 2004 WMAP
13 

axis-of-evil and its 2013 Planck Telescope confirm-

ation
14

, combined with Longo's
12

 surveys of spiral galaxy orientations in both Northern and 

Southern hemispheres, suggest rotation unaccounted for by the cosmological principle. 

 

Theoretical investigations of anisotropic and inhomogeneous solutions of Einstein's equations 

include Bianchi models: spatially homogeneous anisotropic models.  General relativistic curved 
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space-time does not support localized conserved quantities like energy: "it is impossible to con-

struct unique covariant densities of these quantities."  On the other hand, Petrov
11

 observes that: 

 

 [Space-time] is an arena, in which physical fields interact and propagate;  

(…) The space-time itself is a dynamic object. 
 

If we wish to model the primordial field as a dynamic field that expands and contracts in 

different directions, we seek a solution of Einstein's equations, hence a metric solution. Einstein
 1

 

believed that "Space-time does not claim existence on its own, but only as a structural quality of 

the field."  Yau
 2

 proposed: gravitational fields exist without matter, and Feynman
10 

noted that, if 

time dependence is allowed, “the equations permit the presence of fields without sources”. 
 

General relativity is defined by 


 dxdxgds 2
, where curved empty space coordinates dx  

and dx  correspond to flat-space coordinates  . Einstein’s equation 
  TG 8  is interpret-

ed to mean that a stress-energy tensor 
T  induces 'curvature' in the geometry of space-time, 

where 
T  represents energy density or matter.  The simplest case, for spherically symmetric 

mass M , has curvature given by the Schwarzschild metric: 

 
2222222   drdredteds 
,       (1)   

 

which specializes 
 dxdxgds 2 to )21(00 g , 

1

11 )21(  g , where   reduces to 

Newtonian gravity rM  in the appropriate limit. This metric leads to a singularity at
1

11 )21(  g  with the well-known black hole horizon associated with radius Mr 2 ; the Kerr 

metric describes the field for spinning M . Nevertheless, important cosmological solutions are 

also found when 0T , i.e. there is no stress energy term representing either matter or 

distributed energy, thus leading to 0R .  For example the deSitter metric solves Einstein's 

equation with cosmological constant, but is otherwise devoid of matter.  The solution looks the 

same in any direction, hence isotropic; however our interest is in anisotropic models; such a 

solution to 0R  was discovered in 1921 by Kasner, and rediscovered in alternate form in 

1946 by Narlikar and Karmarkar and by Taub in 1951.  The linearized metric 

 

  hg           (2)   

 

describes most of the non-black-hole universe adequately.  The gravitational field is described in 

general relativity via space-time metric: 200 h  

 
j

j

kj

jkjk dxdthdxdxhdtds 0

22 2)()21(         (3) 

 

where ),,( zyx  is the time-independent Newtonian potential rM  in geometricized units 

1 cg .  The Schwarzschild static solution is described (outside of M ) by variants of (3), and 

by Kerr if the mass is spinning.  Massless solutions exist: deSitter, TaubNUT, and Ozvath-
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Schucking,
3 

including Kasner’s exact solution for 3D  space-time dimensions, in Narlikar and 

Karmarkar formulation:
4
 

 

22
1

1

222 )1( j

p
D

j

dxntdtcds j 




       (4) 

subject to  1
1

1






D

j

jp  and  1
1

1

2 




D

j

jp .   

 

Per Vishwakarma
7 

the conventional Kasner metric interpretation is “obscure and questionable”.   

 

 

The Physical Interpretation of the Kasner Metric 

 

Kasner appears to be an appropriate metric for the primordial field, so we investigate the 

physical interpretation of the metric. Vishwakarma observes that when 0T  there is no 

obvious source of curvature in the vacuum; the mass that sources the Schwarzschild and Kerr 

solutions does not exist in the matterless primordial field.  He also notes that when 0n , metric 

(4) reduces to the Minkowski metric, therefore the source of curvature must be contained in n .  

But what is n ?  We assume that nt  is dimensionless, so that it can be added to the number 1, 

hence n  has dimensions t1 .  Vishwakarma discusses the 'singularity' for this metric when 

tn 1  (denoting negative time or frequency.)  But this one-time occurrence of the singularity, 

unlike the 'always there' Schwarzschild radius in space, vanishes after the singular moment; 

nothing is left to sustain space-time curvature contained in the metric. 

 

Recall that the metric represents 'dynamic space-time', while Einstein
 1.155 

believed that "there is 

no such thing as empty space, i.e. a space without field."  Therefore dynamic space-time cor-

responds to a dynamic field, and the energy density of the field implies an equivalent mass den-

sity 'in motion'.  Vishwakarma thus identifies the momentum density of the field as the source of 

metric curvature, and associates the momentum density with ),,(~ 321 pppp
r

.  At this point we 

have the Kasner metric associated with two physical properties: frequency n  and momentum 

density 



rd

Pp
3

r
r

.  This is progress, but the interpretation is still obscure.  It is possible in 

physics to derive mass, length, and time from universal constants ),,( hcg  as follows (Planck 

length 3chgx  , mass ghcm  , time 5chgt  ). Vishwakarma chooses to link the 

momentum density vp
rr

  to frequency 
1 tn  via the universal constants as follows:  

[Newton's gravitational constant g , speed of light c ] 

 









c

v
g

c

pg
n 

r
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Note that )( cv  is dimensionless and 
232

3 1

tl

m

mt

l
g 
















  therefore 

 
1







 t
c

v
gn           (5) 

 

Interesting as this relation is, it is still obscure.  It relates momentum density to frequency as the 

physical correlates of the metric, but the physical meaning of frequency n is still unknown.  We 

choose to introduce a relevant characteristic of the primordial field as follows
 9

: 

 

1

32
~ 








 t

r

r
p

c

g
C

r
rr

        (6) 

 

This offers the advantage of transforming the basis of the Kasner metric from a nebulous 

frequency, formed of a well-chosen combination of universal constants, to the well-known 

gravito-magnetic field C
r

 induced by momentum density p
r

 at distance r
r

 from  p
r

 according to 

the circulation equation 

 

1

2
)(~ 








 ltp

c

g
C

rrr
.        (7) 

 

It seems to have gone unrecognized to date that the parameter n thus linked to momentum den-

sity p
r

 has the dimension of the gravitational C-field and the dynamical relation between the two 

 

GcpcgC t

rrrr
 22 )( ,        (8) 

 

can be obtained from linearizing Einstein's nonlinear field equations.  The misnomer weak field 

equations falsely characterizes the field strength dependence.  The C-field circulation law applies 

at any field strength and is iteratively equivalent to the full nonlinear equations.  The common 

belief that the linearized field equations are weak field equations might lead one to wonder 

whether they apply in the ultra-strong fields of the early inflationary era; however, the complete 

equivalence of the linearized equations, iteratively applied, to the full non-linear field equations 

can be shown. The presence of static mass M leads to a gravitational field: 
rr

~G , whereas 

the presence of momentum density p
r

 leads to the gravitomagnetic field circulation:  pC
rrr

~ .  

Gravitational fields have units of acceleration Gmam
rr

  with 2~|| tlG
r

 while the gravito-

magnetic field has units of angular frequency t1~ .  Thus Kasner parameter n , with dimension 

t1~ , will be identified with the gravitomagnetic field C
r

 where tC 1|| 
r

.  The primordial C-

field comports with Kerson Huang’s
14 

Superfluid Universe, wherein vorticity b
rrr

  is the 

characteristic feature.  The constraints pppTr
rrr

1)(  on ip
 
describe a plane and a sphere in an 

anisotropic universe without matter; a vacuum solution.  Static solutions are isotropic and 

homogeneous, while Kasner’s solution is homogeneous, but not isotropic.  
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The Dynamic Behavior of the C-field 
 

Dynamic systems are often characterized in terms of impulse response, suggesting that we need 

an impulse to kick things off dynamically. To achieve such a transient event we invoke ‘vacuum 

fluctuations’.  In response to fluctuations, we expect disturbances to occur in the field and 

propagate, inducing momentum.  It is unclear exactly how to characterize the disturbance, so we 

examine gravitational waves
5
 in flat-space propagating along the z-axis with 

 

 ),(0 zthh    
zhh  0
   





















0000

00

00

0000

yyyx

xyxx

hh

hh
h  

 

where h  is considered the wave’s metric perturbation. We focus on the transverse behavior 

of the field: the plane wave propagates in z , so non-zero components are:
6
 

 

 yyxx hh    traceless 

 yxxy hh    transverse 

 

This last relation 0 yxxy hh  corresponds to angular moment-

um; the circulation of the gravitomagnetic field.  Our metric (4) 

represents a spatially homogeneous dynamic distribution of 

energy [the field] expanding and contracting anisotropically at 

different rates in different dimensions. One set of solution 

parameters )3/2,3/2,3/1(p
r

represents space expanding in 

two directions, contracting in the third.  For simplicity, we will 

extract the physics of parameters )1,0,0(),,( 321 ppp , 

representing space expanding in one direction, unchanging in 

the other two (relatively contracting). Such a solution can give 

rise to non-zero momentum density, serving as the source of 

curvature represented by n .      Fig. 1. Physical configuration  

 

Unlike Schwarzschild, Kasner’s solution does not represent space outside gravitating mass; it 

represents a dynamic field that expands and contracts in different directions. The Kasner 

cosmological solution has no outside; the expanding field gives rise to momentum P
r

.  

Momentum density p
r

),,( zyx ppp is proportioned according to constraint pppTr
rrr

1)( .  

Dimensionless nt  implies that parameter n  has dimensions of frequency 1~ tn .  Vishwakarma 

establishes the link between n  and momentum density p
r

 via the relation 
1~~ tcpgn .  

Whereas general relativity makes contact with physical reality by requiring the Newtonian limit 

rM , the matterless link to physical reality is the energy density of the dynamic primordial 

field.  This field momentum density induces the gravito magnetic field C
r

 whose physical reality 
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was shown by Gravity Probe B
 17 

and whose theoretical utility was recently shown by Will
 8

 to 

yield Mercury’s perihelion advance. 
 

The C-field is identified with angular momentum, 0 yxxy hh ; in terms of momentum density 

p
r

 the induced gravitomagnetic circulation C
rr

  is defined by pcgC
rrr

)( 2   when 0G
&r

.  

We assume a dynamical field variation in density such that motion of a denser region through 

space establishes momentum density p
r

, inducing C
r

-field circulation.  Conservation of moment-

um invokes an equivalent dense region of field moving in the opposite direction. The vacuum 

fluctuation inducing momentum flow is initially located at the origin; the direction of momentum 

density is the z -axis; the xy -plane establishes the symmetry.  As there is no outside, we predict 

what will be observed at an arbitrary point [excluding the z-axis and xy -plane] located at

),,( zyxr
r

with respect to the origin, shown in Fig 1 above.  The center of mass of a locally dense 

region of the field is treated as a point on the z -axis moving with velocity v
r

. We relate this 

change in position to an arbitrary test point r
r

 and calculate gravitomagnetic field prtrC
rrrr

~),(  

with ),,( zyxr 
r

, ),,( vtzyxr 
r

. For equal and opposite momentum density p
r

  we calculate 

r 
r

 describing the test point with respect to the second region, moving with velocity v
r

 .The left-

handed C field circulation induced by momentum density in the upper hemisphere circulates 

opposite to that induced by the downward momentum density: 
 

 

Evolution of the System 
 

The direction of induced C
r

 field at arbitrary point ),,( zyxr 
r

 depends upon the location of the 

point and the source of the induction.  The test point will see both induced gravitomagnetic fields 

therefore we must sum the fields and then square the summed fields CC
rr

  to obtain a value 

proportional to the gravitomagnetic field energy density at the point. 
 

The geometry of the problem is based on an arbitrary test point r
r

 from the origin of the 

disturbance in the field.  But since r
r

 is arbitrary, and the source (momentum density) is moving, 

what is it we actually wish to calculate?  Initially )0( t  there is zero momentum; eventually 

)0( t the source will have moved far from the test point, therefore we simply display a time-

based field energy density observed at r
r

.  As r
r

 is excluded  from the xy -plane of symmetry, 

one momentum will first approach r
r

, reach a closest point of approach, then recede from r
r

, 

while the other momentum can only ever recede from r
r

. The resulting behavior, scaled for 

convenience, is shown in Fig 2, wherein the horizontal axis is time and the sloped dashed lines 

represent vtz   (not to scale), while the vertical axis measures the energy density of the C-

field at r
r

at each point in time.  We show the energy contribution from the upward moving field 

(2a), the downward moving field (2b), and the summed energy, as a function of time (2c). 

 

As a check, we place test point r
r

 on the xy -plane )0,,( yxr 
r

 and run the same calculation.  

This test point is always equidistant from the source momenta, so the two C
r

 fields seen at r
r

 are 

of equal strength but opposite direction thus they completely cancel at all times: the energy curve 

(not shown) is proportional to 0),(),(  trCtrC
rrrr

.   The C-field energy density is given by: 
9
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  2a            2b                       2c 
 

Fig. (2a).Energy density of left-handed circulation from positive momentum density at ))(,0,0( tz

observed at ),,( zyxr 
r

 beginning at 0t .  Momentum flows up the z-axis (dashed lines) reaching 

a point of closest approach at which field is maximum, then the field declines.  (2b) The opposite 

momentum produces a right-handed circulation at r
r

, then moves farther away; this contribution 

always declines. (2c) The two fields are summed and the local field energy density at ),,( zyxr 
r

 is 

shown as a function of time. 
 

densityenergy
vol

mv
trCtrC

g

c










.
),(),(

22
rrrr

 

 

Our test point is arbitrarily located with respect to the z -axis so any point rotating around the z-

axis becomes a test circle and we show the time behavior of the field observed at all points on 

the circle, seen in fig 3: 

 

Energy density at any point in the neighborhood of a disturbance in 

the field (at the origin) starts at time zero and grows as 

gravitomagnetic circulation at the point, invoked by the momentum 

density of the moving region of locally increased energy density, 

approaching and passing the point at ),,( zyxr
r

. 

 

At the point of closest approach, the local energy of the induced C-

field is maximized; this is a geometrical calculation on a varying 

geometry.  The curves in fig 2 represent the contribution at point 

),,(),,,( trtzyxr 
rr

 .  By choosing the observation point ),,( zyx  we 

effectively specify a ring of equivalent points, all of which will 

experience the same induced C-field energy, as depicted in fig 3 along 

the time axis from eventt   to futuret  .  At 0t  (the event) there 

is no energy at ),( r
r

.                 Fig.3. Energy history 

  

As the disturbance in the field propagates along the z-axis, which is also the t-axis, the 

approaching induction source, momentum density p
r

, induces an increasingly strong gravito-

magnetic circulation (vorticity)
15

 with left-handed circulation increasing and right-handed circu-

lation diminishing at the point.  At nearest approach, every point on a circle surrounding )(zp
r
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and containing ),,( zyxr
r

 will experience maximum field strength, followed by a decrease as 

both sources move further away in time and distance.  In fig 3 the north-south axis is both time t  

and distance z , while the contribution to the C-field induced at point ),,( zyxr
r

 by momentum 

),0,0( vtp
r

 peaks at vtz  , then diminishes as zvt  .  Eventually the induced local field energy 

at ),( r
r

 effectively vanishes. 

 

We interpret energy-time diagram (Fig 3) by noting that the diagram shows instantaneous 

conditions at r
r

 over the course of time.  There is no field memory in our model; such analysis 

needs still to be performed. 

 

Vishwakarma’s n  incorporates momentum density as the source of metric curvature; we identify 

n  as the gravitomagnetic field induced by a moving region of higher field density while 

conserving total momentum (linear and angular).  Field density variations break homogeneity: as 

Kasner is defined as a homogeneous, anisotropic solution, we wish to restore the homogeneous 

nature to our solution.  If initial energy density is unity, the density at the test point becomes 

),(),(1 trCtrC
rrrr

  over a unit volume, compared to the original density of one per unit volume.  

For a constant density (homogeneous) solution we calculate new volume volCC _  and equate 

densities: 

 

therefore CC
vol

volCC rr



1

_
 

 

and thus space is expanding at the arbitrary point ),,( zyxr
r

: 

 

  volCCvolCC )1(_
rr

  

 

This Kasner metric solution of the Einstein field equations, in which one spatial dimension 

expands while the other two spatial dimensions are static, yields an anisotropic evolution of a 

homogeneous field. 

 

 

Conclusion 

 

To a surprising degree, our cosmology at the century mark is unknown; George Ellis
 18

: 

 

The nature of the inflaton, the nature of dark matter, the nature of dark energy are all 

unknown. 

 

Potentially related to our model, Evans & Eckardt
 19 

claim "the second Bianchi equation used by 

Einstein and Hilbert is incomplete" as is the cosmology based on that equation, except in the 

narrow special case in which torsion is zero.  They derive a new identity that, combined with the 

first Bianchi identity, relates curvature to torsion.  Their torsion-based vector equations (62) and 

(63) resemble our C-field equations.  And although the source of curvature is typically a stress 

volvolCC

trCtrC 1

_

),(),(1





rrrr
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energy tensor T , vacuum equations are seen to have curvature despite a lack of matter.  The 

primordial field is assumed to be the gravitational field, yet for over a century physicists have 

failed to find a form of T  representing the local energy of the gravitational field; Feynman
 10 

remarked that “Even for very simple problems, we have no idea how to go about writing down a 

proper T .”   Moreover, the Horizon problem concerns the isotropy of the universe based on 

inflation models wherein separate regions of the universe are never in contact.  In this light, our 

approach based on the Kasner metric, whose physical interpretation has been ‘obscure’, suggests 

a cosmos with rotation.  Longo 
12

 describes his experiment as 'testing homogeneity and isotropy' 

via surveys of spiral galaxies, and he finds anisotropy.  The 2004 WMAP axis-of-evil anisotropy 

was confirmed in 2013 by the Planck Telescope – the anisotropy is there.  

 

New Scientist (26 Oct 2016): 

 

From the rotation of galaxies to cosmic expansion everything points in one direction. If 

only we knew why? 

 

The Kasner metric solution of Einstein's equation describes how everything could end up point-

ing in one direction by virtue of a dynamic primordial event that organizes the field as it evolves.  

We reject that the source of curvature in Kasner is a singularity appearing at nt 1 , which 

does not appear at any other time, while the solution is curved at all times.  Our interpretation of 

pre-spacetime, as primordial field, implies that dynamic space-time corresponds to a dynamic 

field whose momentum density physically exists.  The momentum induces a circulating gravito-

magnetic field that distributes field energy locally, effectively expanding space at an arbitrary 

point in space-time. If the field already exists at the given arbitrary point and expansion is 

inhibited, the local field energy acts to increase expansion pressure in the region of the point, 

potentially acting as dark energy. Early in the post-bang era virtually unlimited field energies are 

expected.  The interpretation of Kasner parameter n  as the gravitomagnetic field provides a new 

perspective on the physical nature of the primordial field and a qualitative mechanism and 

explanation of the evolution of dynamic space-time of the primordial field. The C-field 

interpretation of the metric induces vorticity subject to conserved momentum; linear and angular.  

The time dependence of the Kasner metric is essentially different from the static space 

dependence of the Schwarzschild and Kerr metrics.  This would seem to satisfy a requirement for 

an evolving space-time theory.  Other issues to be investigated for this theory include the nature 

of the ‘vacuum fluctuation’ that triggers the event, as well as the nature of any field ‘memory’ 

that sustains circulation after the instantaneous event has ‘moved on’. 
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