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Article

Brief Lecture Notes on Self-Referential Mathematics, and
Beyond

Elemér E Rosinger1

Abstract

Recently delivered lectures on Self-Referential Mathematics, [2], at the Depart-
ment of Mathematics and Applied Mathematics, University of Pretoria, are briefly
presented. Comments follow on the subject, as well as on Inconsistent Mathematics.

0. Prologue

The basic idea in the Self-Referential Mathematics, [2], is to replace the Founda-
tion Axiom, (FA), in Set Theory with a suitable Anti-Foundation Axiom, (AFA), in such
a way as to :

- keep all the sets in the usual Set Theory

while at the same time, to :

- allow a large class of new sets, sets given this time by self-referential definitions.

In other words, one obtains a significant extension of usual Set Theory, an exten-
sion which is proved to be consistent, provided usual Set Theory is consistent.

As it happens not seldom in science, the terminology used may turnout to be
rather inappropriate, if not in fact misleading. The same happens in [2], where the
term "vicious circle" is used instead of "self-referential".

A likely reason for that particular terminology in [2], which has a clear negative
connotation, comes from the fact that the 1903 Russell Paradox in Set Theory is based
on self-reference, being but a reformulation in mathematical, in particular, set theo-
retic terms of the ancient Greek paradox of the liar.

On the other hand, when considered in the larger and longer perspective of hu-
man tradition and civilization, self-reference, together with infinity and change, have
since the earliest known, in fact, prehistoric times been some of the fundamental
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ideas preoccupying human thought, and as such, they have not had any sort of in-
evitable negative connotation, see section 5. It follows, therefore, that the term "vi-
cious" can be seen as an overstatement resulted from a partial view of what self-
reference does in fact encompass and mean in its more full generality.

We can in essence clarify as follows the aims and the means of the Self-Referential
Mathematics in [2]. Let us consider the following three groups of axioms of Set The-
ory, see section 6 for all the usual axioms, in particular, those used in [2] :

ZFC− = Zermello - Fraenkel + Choice

ZFC = ZFC− + FA

ZFA = ZFC− + AFA

where the AFA axiom with be specified in section 2.

At first, it may appear that the Set Theories corresponding to ZFC and ZFA may
be rather different, since their common part corresponds only to ZFC−, while the
respective additional axioms FA and AFA seem in fact to be inconsistent with one
another.
However, as it turns out this is not the case. And what happens instead is that :

• The Set Theory based on the ZFA axioms contains all the sets in the Set Theory
based on the ZFC, and in addition, contains a large class of other sets obtained
by self-referential definitions.

• The axioms ZFA are consistent, provided that the axioms ZFC are consistent.

As for the traditional and still exclusively predominant idea of the absolute neces-
sity of consistency, one should consider the recent emergence of Inconsistent Math-
ematics, see [11,12]. And in fact, as far as everyday practice is concerned, we have for
more than half a century by now been basing much of our lives on a specific form of
Inconsistent Mathematics. Indeed, our ever more pervasive and critically important
electronic digital computers are - even when only operating on non-negative inte-
gers - functioning according to the Peano Axioms, plus the Machine Infinity Axiom,
namely

∃ M >> 1 : M +M = 1

where M is called "machine infinity", and typically is larger than 101000. And obvi-
ously, the Peano Axioms are trivially inconsistent with the Machine Infinity Axiom.

1. Sets, Ur-Elements and Classes
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We denote by SET the class of all sets, including the unique void set φ. As is well
known, a lot of mathematics can be built up starting alone with the void set φ. In-
deed, as a first step, and following von Neumann, one can define the non-negative
integers by

0 = φ, 1 = {φ}, 2 = {{φ}}, . . .

and then, step by step build all the integers, the rational and real numbers, and so
on. Further, one can define Cartesian products, binary relations, functions, etc., and
obtain a considerable part of mathematics in this manner.

In the sequel, it will be convenient to allow, in addition to the void set φ, other
such starting entities in the construction of mathematics. The class of such entities
is denoted by U , and any respective element u ∈ U is called an ur-element, assumed
to have only one property, similar to that of the void set φ, namely that the relation

a ∈ u

does not hold for any entity a in the theory.

In this way, there will be three types of entities in the theory, namely

1) SET , which is the class of all sets,

2) U which is the class of all ur-elements, and

3) CLASS which denotes all the classes.

Here it is understood that any set a ∈ SET is a "small" class, while SET itself is
one of the "proper" classes, since it is not itself a set. In other words, SET ∈ CLASS,
SET /∈ SET , CLASS /∈ SET .
As for ur-elements, it is assumed that U ∈ CLASS and it is another instance of
"proper" class, thus in particular U /∈ SET .

Briefly, we have therefore

1) SET denotes all the sets, and it is a proper class

2) CLASS denotes all the classes

3) U denotes all the ur-elements, and it is a proper class

4) a set is a "small" class

5) a class which is not a set is "large", thus it is a proper class

6) an ur-element does not have any elements, either sets, ur-elements,
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or classes

7) non-set = proper class
∨

ur-element

8) non-set
∧

non-class = ur-element

9) every predicate determines a class

10) a subclass of a set is a set

11) sets are closed under a number of operations, among them,
pairing, union, power set, see below

12) a ∈ b ∈ CLASS =⇒ a ∈ SET

13) the class SET of all sets is "large", thus it is a proper class

indeed, according to Russell’s Paradox, let SET be a set,
then R = {a ∈ SET | a /∈ a} is a set, thus R ∈ SET , and there-

fore R ∈ R ⇐⇒ R /∈ R, which is absurd

As for the binary relation ∈, we have

- set ∈ set
- set ∈ proper class
- set /∈ ur-element
- proper class /∈ set
- proper class /∈ proper class
- proper class /∈ ur-element
- ur-element ∈ set
- ur-element ∈ proper class
- ur-element /∈ ur-element

thus denoting ∈ by→, while /∈ by 9 , we have
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• set • φ

• proper class

SET

• SET = proper class-

• U = Ur − elements = proper class CLASS

Note on ur-elemets

Clearly

a /∈ φ

holds for all entities a in the theory, however, it is nevertheless considered that

φ ∈ SET and φ /∈ U

Also, it is possible that

X ∈ SET and X ∩ U 6= φ, or even X ⊆ U

For instance, if x ∈ U , then

X = {x} ∈ SET, X ⊆ U .

Note on SET

Here we should clarify that SET denotes, in fact, all the sets which exist in the Set
Theory based on the ZFA axioms. Therefore, let us denote by SET0 all the sets in the
Set Theory based on the ZFC axioms. Then as mentioned in section 0, and seen later,
we have SET0 $ SET , thus the above diagram can be made more precise as follows

• set • φ

• proper class

SET

• set • SET = proper class-SET0

• SET0 = proper class-

• U = Ur − elements = proper class CLASS
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Examples of Sets

There are only two kind of sets a ∈ SET , namely

(1.1) a = φ, which is equivalent with ¬ ( ∃ b ∈ SET
⋃
U : b ∈ a )

(1.2) ∃ b ∈ SET
⋃
U : b ∈ a

Operations with sets

An ordered pair is the set < a, b > = {{a}, {a, b}}, with a, b ∈ SET

thus < a, b > = < c, d > ⇐⇒ a = c, b = d

A relationR ∈ SET has all its elements given by pairs < a, b >, where a ∈ A, b ∈ B,
for two suitably given sets A, B ∈ SET . Often for convenience one denotes aRb for
< a, b >∈ R.

If A ∈ SET is such that < a, b >∈ R =⇒ a, b ∈ A, then R is a relation on A.

A relational structure is < A,R >, with R relation on A.

A function is a relation R such that < a, b >, < a, c >∈ R =⇒ b = c

If f is a function, then

(1.3) dom(f) = {a | ∃ b : f(a) = b}

(1.4) rng(f) = {b | ∃ a : f(a) = b}

thus

(1.5) f ∈ c→ d ⇐⇒ c = dom(f), rng(f) ⊆ d

The power set of a ∈ SET is

(1.6) P(a) = {b | b ⊆ a}

Example : if a = {φ, p}, with p ∈ SET
⋃
U , then P(a) = {φ, {φ}, {p}, a}.

Consider the predicate P ( x ) given by

(1.7) x is an ordered pair < a, b > and b = P(a)

then this defines the power set function P : SET −→ SET , and
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(1.8)
⋃
dom(P) = SET

thus it is "large", and therefore, a proper class.

The natural numbers are

(1.9) 0 = φ, 1 = {0} = {φ}, 2 = {0, 1} = {φ, {φ}}, . . .

Disjoint union is A+B = ({0} × A) ∪ ({1} ×B)

For a ∈ SET , we define

(1.10)
⋃
a = { x | ∃ y ∈ a : x ∈ y } = {x ∈ y ∈ a}

2. Systems of Equations Which Define Sets

In usual, that is, ZFC Set Theory, one way to define a set X is by an equation

X = {x | P (x)}

where P is a suitable predicate. Within ZFC, an essential restriction on P is that
it cannot in any way refer to the set X which it is supposed to define. This condition
is meant to avoid a "vicious circle", or in more proper terms, self-referentiality, an
avoidance which has until recently been universally accepted, and in fact required,
since Russell’s paradox.

In particular, one cannot define any set a ∈ SET0, even by such a simple equation,
like

(2.1) a = {a}

since obviously, it is a self-referential equation. On the other hand, as seen in 1),
4), 5) in Examples 2.1. below, this equation can easily be solved in SET , that is, based
on the Anti-Foundation Axiom, (AFA).

Here we can note that one cannot define any set a ∈ SET0, or for that matter,
a ∈ SET , even by the yet more simple equation

(2.2) a = a

since this equation will obviously not give a unique set in SET0, or in SET .

Also, as seen in 3) in Proposition 2.3. below, one cannot define a set a ∈ SET by
the equation
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(2.3) a = P(a)

Let us consider now the equation

x = {a, x}

where a ∈ SET
⋃
U is given. Then

x = {a, x} = {a, {a, x}} = {a, {a, {a, x}}} = . . .

thus an intuitive solution would be

x = {a, {a, {a, . . .}}}

which however is not possible within ZFC, since it would obviously lead to the in-
finite descending sequence

. . . x ∈ x ∈ x ∈ x ∈ x

thus contradict the Foundation Axiom, (FA), see below.

Let us now return to the general situation and enquire what should the solution
given by sets be of a corresponding system of equations. Let us as an example con-
sider for that purpose the following system of equations, where p, q ∈ SET

⋃
U are

given, and where we want to find sets x, y, z ∈ SET , such that

x = {x, y}

y = {p, q, y, z}

z = {p, x, y}

Let e : X = {x, y, z} −→ the right-hand sides of the above equations

thus

ex = {x, y}, ey = {p, q, y, z}, ez = {p, x, y}

What is then a solution s to these equations supposed to be ?

One way is given by s : X −→ SET , namely X 3 v 7−→ sv ∈ SET , with

sx = {sx, sy}, sy = {p, q, sy, sz}, sz = {p, sx, sy}

or equivalently
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∀ v ∈ X :

sv = {sw | w ∈ ev ∩X}
⋃
{w | w ∈ ev ∩ A} =

= s[ev ∩X]
⋃

(ev ∩ A)

where A = {p, q}

Returning now to the equation, see (2.2)

x = x

one way to avoid the inconvenience of non-unique solutions in SET , is to take,
see also (2.10) below

X = {x} ⊆ U

and then the solution s, if it exists, is a function

s : X 3 x −→ sx ∈ SET

This liberty to distinguish between indeterminates, and on the other hand, the so-
lution is in fact familiar from usual algebra. Indeed, if for instance we have the system
of equations in real numbers

2x+ 3y = 7
5x− 4y = 1

then the set of indeterminates is X = {x, y}, while a solution s, which in this case
exists, is given by a function s : X 3 v −→ sv ∈ R. This distinction is even more
obvious when, as with a system of equations like

3x+ 2y = 5
5x− 3y = 2

the indeterminates have the same value x = y = 1, thus the solution cannot be
identified with the single number 1, but only with the function s : X 3 v −→ sv ∈ R,
for which sx = 1, sy = 1.

Finally we can note that, as seen in Definition 2.2. below, the requirement X ⊆ U
can on occasion be done away with.

Now, the approach in [2] to Self-Referential Mathematics will be able to accept for
sets in SET such definitions which are given by certain systems of equations that can
be self-referential. There are in this regard three kind of systems of equations consid-
ered so far. The first kind of systems is given by
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Definition 2.1.

A structure E = < X,A, e > is called a flat system of equations, if and only if

(2.4) X, A ∈ SET , X ⊆ U , X
⋂
A = φ

with X the set of indeterminates and A the set of atoms, while

(2.5) e : X −→ P(X
⋃
A)

defines the right hand terms of the equations of the system, see (2.8) below, with

(2.6) X 3 v 7−→ bv = ev ∩X

being the set of indeterminates on which v immediately depends, and similarly,
with

(2.7) X 3 v 7−→ cv = ev ∩ A

being the set of atoms on which v immediately depends

In this way, the flat system of equations is given by

(2.8) x = ex, x ∈ X

which of course can in particular be one single equation, when X = {x} is a set
with one single element.

A solution to E is a function

(2.9) X 3 x 7−→ sx = {sy | y ∈ bx}
⋃
cx ∈ SET

and we denote

solution− set(E) =
⋃
{sx | x ∈ X} =

= {sy | y ∈ ex ∩X, x ∈ X}
⋃ ⋃

x∈X(ex ∩ A) = s[X] ∈ SET

as well as

V [A] =
⋃{

solution− set(E)
E flat system of equations
with atoms A

}
=

=

{
c
∃ E =< X,A, e > flat system of equations :
c ∈ solution− set(E)

}
=
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=

{
sy
∃ E =< X,A, e > flat system of equations :
y ∈ ex ∩X, x ∈ X

} ⋃
⋃ {

c
∃ E =< X,A, e > flat system of equations :
c ∈ ex ∩ A, x ∈ X

}
⊆ SET

and clearly, V [A] is always a proper class, see 2) in Note 2.1. below.

�

There are two remarkable facts about the concept of flat systems of equations given
in the above Definition 2.1., namely

• the Anti-Foundation Axiom, (AFA), upon which the whole of Self-Referential
Mathematics in [2] rests, has a most simple formulation in terms of flat systems
of equations, as seen next,

• the flat systems of equations do in fact give all the additional new sets in SET \
SET0, that is those which due to their self-referential definitions, cannot be ob-
tained by the usual ZFC Set Theory, see the equivalence Theorem 2.1. below,
see also 1) in Note 2.1. below.

ANTI-FOUNDATION AXIOM (AFA)

∀ E flat system of equations : ∃ ! s solution

Here, for the sake of further clarity, let us recall that in ZFC we have

AXIOM OF FOUNDATION ( FA )

∀ a ∈ SET : < a,∈> well-founded

where the concept of a well-founded relational structure is defined as follows.

A relational structure < S,R > is called well-founded, if and only if it has no infi-
nite descending sequence

. . . anRan−1R . . . R a2Ra1Ra0

with a0, a1, a2, . . . , an−1, an, . . . ∈ S.

For a relational structure < S,R >, we denote
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< S,R >wf = {a ∈ S | no infinite descending sequence in R starting with a}

Clearly

< S,R > well − founded ⇐⇒ < S,R >wf = S

For simplicity, we denote

Rwf =< S,R >wf

Remark 2.1.

In view of the above (AFA) axiom, the question arises :

• Which flat systems of equations have solutions under the (FA) axiom ?

The answer is obtained based on the following concept. A flat system of equations
E =< X,A, e > is called well-founded, if and only if the relation < defined on X by

x < y ⇐⇒ y ∈ ex

is well-founded. And then we have, see [1,2]

Mostowski Collapsing Lemma

In ZFC− well-founded flat systems of equations have unique solutions.

Corollary 2.1.

In ZFC− we have the equivalence

(FA) ⇐⇒
(

only well-founded flat systems
of equations have solutions

)

Note 2.1.

1) Flat systems of equations can trivially recover all sets E ∈ SET . Indeed, let
A = E. Further, let X = {x}, with x ∈ U , such that x /∈ E, which is possible since
U " E, given the fact that U is a proper class. Then X ⊆ U and X ∩ A = φ, hence

ex = E

is obviously a flat system of equations, thus according to (AFA), it has a unique
solution s. Now in view of (2.6), (2.7), we have bx = ex ∩X = φ, cx = ex ∩ A = E, and
then (2.9) gives

sx = {sy | y ∈ ex ∩X} ∪ (ex ∩ A) = E
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In this way, the set E was obtained as the unique solution

s : X = {x} 3 x 7−→ sx = E

of the above flat system of equations.

2) In view of the above example, each x ∈ U leads to a flat system of equations
with the respective unique solution sx. And clearly, if x, x ′ ∈ U , x 6= x ′, then sx 6= sx ′ .
As for U , it is a proper class, therefore, so is {sx | x ∈ U}.

Examples 2.1.

Let us illustrate the above in the case of the equations (2.1) - (2.3).

1) For (2.1), we can take

X = {x} ⊆ U , A = {φ}, ex = {x} ∈ P(X
⋃
A)

therefore, it is a flat system of equations, made up of a single equation. As for its
unique solution sx ∈ SET , we shall see the details in 4) and 5) below.

2) For (2.2), we can take

X = {x} ⊆ U , A = {φ}, ex = x

thus

ex ∈ X
⋃
A, ex * X

⋃
A, ex /∈ P(X

⋃
A)

therefore, it is not a flat system of equations.

Also, with (2.2), we can immediately note why the condition

(2.10) X ⊆ U

was requested in Definition 2.1. Indeed, without that condition, equation (2.2) is
satisfied by all sets a ∈ SET , thus (2.2) does not have a unique solution in SET .

3) With the equation (2.3), we can take

X = {x}
⋃
x ⊆ U , A = φ, ex = P(x) " X

⋃
A, ex /∈ P(X

⋃
A)

which, however, does not turn (2.3) into a flat system of equations. Also, as seen
in 3) in Proposition 2.3. below, equation (2.3) does not have any solution in SET.

4) In ZFA, the equation
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(2.11) x = {x}

has a unique solution Ω ∈ SET . Indeed, as note at 1) above, if we take

X = {x} ⊆ U , A = φ, ex = {x}

then (2.11) is a flat system of equations, thus in view of (AFA), it has a unique so-
lution sx ∈ SET , and according to (2.9), we have

(2.12) sx = {sy | y ∈ bx} ∪ cx

However, (2.6) gives bx = ex ∩ X = {x} ∩ X = X = {x}, while (2.7) implies
cx = ex ∩ A = φ. Thus (2.12) becomes

sx = {sx}

5) The above unique solution Ω ∈ SET obviously has the property

Ω = {Ω} = {{Ω}} = {{{Ω}}} = . . .

however, this need not mean that the bracket pairs { } could be infinitely many,
namely, that we could have for instance

Ω = . . . {{{Ω}}} . . .

let alone that the bracket pairs { } could reach to transfinite ordinals, or go through
all the ordinals, see Remark 2.3. below.

6) In ZFA, there is a unique set

(2.13) {0, {1, {2, {3, . . .}}}} ∈ SET

Indeed, we consider the flat system of equations

x0 = {0, x1}
x1 = {1, x2}
x2 = {2, x3}
x3 = {3, x4}
...

where X = {x0, x1, x2, x3, . . .} ⊆ U , A = {0, 1, 2, 3, . . .}, while exn = {n, xn+1}, with
n ≥ 0. Then (AFA) gives a unique solution s, and in view of (2.6), (2.7), (2.9), we obtain
the relations

sx0 = {sx | x ∈ bx0} ∪ cx0 = {sx | x ∈ ex0 ∩X} ∪ (ex0 ∩ A) = {0, sx1}
sx1 = {sx | x ∈ bx1} ∪ cx1 = {sx | x ∈ ex1 ∩X} ∪ (ex1 ∩ A) = {1, sx2}
sx2 = {sx | x ∈ bx2} ∪ cx2 = {sx | x ∈ ex2 ∩X} ∪ (ex2 ∩ A) = {2, sx3}
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...

thus

sx0 = {0, sx1} = {0, {1, sx2}} = {0, {1, {2, sx3}}} = . . .

7) Let us consider that flat system of equations without atoms, that is, with A = φ,
namely

x0 = {y0, x1} y0 = φ
x1 = {y1, x2} y1 = {y0}
x2 = {y2, x3} y2 = {y0, y1}
x3 = {y3, x4} y3 = {y0, y1, y2}
...

where X = {x0, y0, x1, y1, x2, y2, . . .} ⊆ U , A = φ, while exn = {yn, xn+1}, eyn+1 =
{y0, . . . , yn}, for n ≥ 0, and ey0 = φ. In this case, (2.6), (2.7) give

bxn = exn ∩X = {yn, xn+1}, n ≥ 0

by0 = ey0 ∩X = φ
byn+1 = eyn+1 ∩X = {y0, . . . , yn}, n ≥ 0

cxn = cyn = φ, n ≥ 0

therefore, in view of (2.9), the unique solution s given by (AFA), is such that

sxn = {sx | x ∈ bxn} ∪ cxn = {syn , sxn+1}, n ≥ 0

sy0 = {sy | y ∈ by0} ∪ cy0 = φ
syn+1 = {sy | y ∈ byn+1} ∪ cyn+1 = {sy0 , . . . , syn}, n ≥ 0

In particular

sy0 = φ
sy1 = {sy0} = {φ}
sy2 = {sy0 , sy1} = {φ, {φ}}
sy3 = {sy0 , sy1 , sy2} = {φ, {φ}, {φ, {φ}}}
...

which means that, for n ≥ 0, we obtain that

syn = n in the von Neumann representation

Proposition 2.1.
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Let E =< X,A, e > be a flat system of equations. If A ⊆ U , then set solution −
set(E) is transitive, namely

b, c ∈ SET, c ∈ b ∈ solution− set(E) =⇒ c ∈ solution− set(E)

Proof.

We recall that

solution− set(E) = {sy | y ∈ ex ∩X, x ∈ X}
⋃ ⋃

x∈X(ex ∩ A)

Let b ∈ solution− set(E), then

either b = sy, for some y ∈ ex ∩X, with suitable x ∈ X,

or b ∈ ex ∩ A, for some x ∈ X.

In the first case, if c ∈ b = sy = {sz | z ∈ ey ∩X} ∪ (ey ∩ A), then

either c = sz, thus c ∈ solution− set(E),

or c ∈ ey ∩ A, thus again c ∈ solution− set(E).

In the second case, if b ∈ ex ∩ A, then b ∈ U , thus there cannot be c ∈ b.

Proposition 2.2.

If A ⊆ U , then

V [A] ⊆ Vafa[A]

where the operation Vafa is defined in (3.5) in the next section.

Note : Here we make an advance use of some notations and results in section 3
below. However, placing Proposition 2.2. here in section 2 helps in the better un-
derstanding of the concept of flat system of equations, as well as of its fundamental
importance seen in the equivalence Theorem 2.1. below.

Proof.

Let c ∈ V [A], then for some E =< X,A, e > flat system of equations we have either

c = sy, for some y ∈ ex ∩X, x ∈ X

or

ISSN: 2153-8301

Prespacetime Journal
Published by QuantumDream, Inc.

www.prespacetime.com



Prespacetime Journal | February 2011| Vol. 2 | Issue 2 | pp. 324-362
Rosinger, E. Brief Lecture Notes on Self-Referential Mathematics, and Beyond 340

c ∈ ex ∩ A, for some x ∈ X

In the first case we also have

c ⊆ Z = solution− set(E) =

= {sy | y ∈ ex ∩X, x ∈ X}
⋃ ⋃

x∈X(ex ∩ A)

since in view of (2.9)

c = sy = {sz | z ∈ ey ∩X} ∪ (ey ∩ A)

But in view of Proposition 2.1., the set Z = solution − set(E) is transitive. There-
fore, for x ∈ X, we have, see (3.3) below

sx ⊆ TC(sx) ⊆ Z

which gives

TC(sx) ∩ U ⊆ Z ∩ U ⊆ A

Indeed, if b ∈ Z ∩ U , then in particular

either b = sy, for some y ∈ ex ∩X, with suitable x ∈ X,

or b ∈ ex ∩ A, for some x ∈ X.

In the first case, b /∈ U , since sy ∈ SET .

In the second case obviously b ∈ A.

In conclusion, in view of (3.5), we have c ∈ Vafa[A].

Remark 2.1.

The following is, of course, a fundamental question :

• How many sets a ∈ SET can be obtained as solutions of flat systems of equa-
tions ?

In 1) in Note 2.1. above, we have seen that flat systems of equations can trivially
recover as solutions all sets in SET . A more precise and rather natural answer, and as
such, best possible answer will be given in Theorem 2.2. below.
Needless to say, this answer highlights the importance of flat systems of equations.
However, in various contexts, other two concepts of systems of equations will prove
to be useful, concepts given in Definitions 2.2. and 2.3. below.

�
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Now, the second kind of systems of equations aims to eliminate the above restric-
tion X ⊆ U in (2.10) on the flat systems of equations. And as we shall see in Theorem
2.1. below, this is in fact possible, in spite of the above problem with lack of unique-
ness of solutions, provided that the STRONG AXIOM OF PLENITUDE is accepted.

Definition 2.2.

A structure E = < X,A, e > is called a generalized flat system of equations, if and
only if

(2.14) X, A ∈ SET, X
⋂
A = φ

with X the set of indeterminates and A the set of atoms, while

(2.15) e : X −→ P(X
⋃
A)

�

There is a close connection between the solutions of flat, and on the other hand,
generalized flat systems of equations, provided that the following axiom holds

STRONG AXIOM OF PLENITUDE

There is an operation new(a, b), such that

1) ∀ a ∈ SET, b ⊂ U : new(a, b) ∈ U \ a

2) ∀ a, a ′ ∈ SET, a 6= a ′, b ⊂ U : new(a, b) 6= new(a ′, b)

Theorem 2.1.

Assuming the STRONG AXIOM OF PLENITUDE, every generalized flat system of
equations E = < X,A, e > has a unique solution s. Furthermore, there exists an
associated flat system of equations E ′ = < Y,A, e ′ >, such that

solution− set(E) = solution− set(E ′)

Proof.

We have to replace X by a set Y ⊂ U , such that Y ∩ A = φ. Thus we take

Y = {yx | yx = new(x,A), x ∈ X}

then

Y ⊂ U , Y ∩ A = φ
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Let now

e ′yx = {yz | z ∈ ex ∩X}
⋃

(ex ∩ A)

Clearly, E ′ = < Y,A, e ′ > is a flat system of equations, and thus, it has a unique
solutio s ′.

Now we get the solution s of E = < X,A, e > given by

sx = s ′yx , x ∈ X

The uniqueness of s follows from the fact that every solution t of E = < X,A, e >
gives a solution t ′ of E ′ = < Y,A, e ′ >. And we must have t ′ = s ′, thus it follows
that t = s.

�

Example 2.2.

For every set a ∈ SET , we associate the canonical generalized flat system of equa-
tions Ea =< Xa, Aa, ea >, with, see (3.1)

Aa = TC(a)
⋂
U

Xa = TC({a}) \ Aa

and

Xa 3 x 7−→ (ea)x = x ⊆ Xa

⋃
Aa

where we have to prove the inclusion in the last relation.

We note in this regard that, see (3.2∗), (3.3∗) and 1) in Examples 3.1.

Aa = {x ∈ U | x ∈ an ∈ . . . ∈ a1 ∈ a0 = a, n ≥ 0}

Xa = ( {a}
⋃
TC(a) ) \ ( TC(a)

⋂
U ) =

= ( {a}
⋃
{x | x ∈ an ∈ . . . ∈ a1 ∈ a0 = a, n ≥ 0} )\

\ {y ∈ U | y ∈ bm ∈ . . . ∈ b1 ∈ b0 = a, m ≥ 0} =

= {a}
⋃
{x ∈ SET | x ∈ an ∈ . . . ∈ a1 ∈ a0 = a, n ≥ 0}

thus

x ∈ Xa =⇒ x ∈ SET
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Furthermore

x ∈ Xa =⇒ x ⊆ Xa

⋃
Aa

Indeed, given x ∈ Xa, then there are the two cases

(i.1) x = a

(i.2) x ∈ an ∈ . . . ∈ a1 ∈ a0 = a, for some n ≥ 0

Let now y ∈ x. In case (i.1), we have y ∈ a, thus y ∈ Xa, provided that y /∈ U .
Otherwise obviously y ∈ Aa. In case (i.2), clearly y ∈ (Xa ∪ Aa).

Assuming now the STRONG AXIOM OF PLENITUDE, we have in view of Theorem
2.1., a unique solution sa of Ea. And in fact, we have

sa : Xa 3 x 7−→ (sa)x = x ∈ SET

Indeed, (2.9) gives for x ∈ Xa

(sa)x = {(sa)y | y ∈ (ea)x ∩Xa} ∪ ((ea)x ∩ Aa) ∈ SET

while

(ea)x ∩Xa = x ∩Xa, (ea)x ∩ Aa = x ∩ Aa

thus

(sa)x = {(sa)y | y ∈ x ∩Xa} ∪ (x ∩ Aa) ∈ SET

which in our case becomes the identity

x = {y | y ∈ x ∩Xa} ∪ (x ∩ Aa) ∈ SET

Theorem 2.2. Equivalence

Assuming now the STRONG AXIOM OF PLENITUDE, we have forA ⊆ U the equiv-
alence between sets in SET which have support in A, and sets in SET which are so-
lutions of flat systems of equations with atoms in A, namely

Vafa[A] = V [A]

Proof.

In view of Proposition 2.2., we have
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V [A] ⊆ Vafa[A]

Let now a ∈ Vafa[A]. Then by definition, see (3.5) below

TC(a) ∩ U ⊆ A

Now, in view of Example 2.2., we consider the unique solution sa of the canonical
generalized flat system of equations Ea =< Xa, Aa, ea >, which is sa = idXa . Thus,
recalling that a ∈ Xa and Aa = TC(a) ∩ U ⊆ A, we obtain

sa = a

which gives

a ∈ solution− set(Ea)

On the other hand, in view of Theorem 2.1., there is a flat system of equations
E =< X,Aa, e > with the same atoms Aa, such that

solution− set(Ea) = solution− set(E)

hence a ∈ solution− set(E) ⊆ V [A]
�

Finally, the third kind of systems of equations allows considerably more general
right hand terms ex in (2.5), (2.15), although it has to accept harder restrictions on X
and A, than in Definition 2.1., that is, in (2.10). Namely

Definition 2.3.

A structure E = < X,A, e > is called a generalized system of equations, if and
only if

(2.16) X, A ∈ SET, X, A ⊆ U , X
⋂
A = φ

with X the set of indeterminates and A the set of atoms, while

(2.17) e : X −→ Vafa(X
⋃
A)

where the operation Vafa is defined in (3.5) in the next section.

Remark 2.2.

As we shall see in section 3, the range Vafa(X
⋃
A) of the mappings e in (2.17) is

considerably larger than P(X
⋃
A), which is the range of the corresponding map-

pings in (2.5) and (2.15). Therefore, the generalized systems of equations defined
above contain as a rather small particular case the flat and the generalized flat sys-
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tems of equations.

Examples 2.3.

1) For a given a ∈ SET
⋃
U , let us consider the equation

(2.18) x = x −→ a

hence it is not a flat or generalized flat system of equations, if we take

X = {x}, A = {a}, ex = x −→ a ⊆ x× a, ex * X
⋃
A

ex /∈ P(X
⋃
A)

although (2.18) has solution in SET, see 5) in Proposition 2.3. below.

2) For given p, q ∈ SET
⋃
U , the equation

(2.19) x = {{x, q}, p}

is not a flat or generalized flat system of equations, if considered with

X = {x}, A = {p, q}, ex = {{x, q}, p} * X
⋃
A, ex /∈ P(X

⋃
A)

although it can be written as a flat system of equations, provided that x ∈ U ,
namely

x = {y, p}

y = {x, q}

hence

X = {x, y}, A = {p, q}, ex = {y, p}, ey = {x, q} ⊆ X
⋃
A,

ex, ey ∈ P(X
⋃
A)

Proposition 2.2.

Within ZFC we have

1) ∀ a ∈ SET : a /∈ a

2) ¬∃ a1, . . . , an ∈ SET : a1 ∈ . . . an ∈ a1

3) ¬∃ a, b ∈ SET : a ∈ TC(b) ∈ a
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4) ¬∃ a, b ∈ SET : a ∈ TC(b), b ∈ TC(a)

5) ∀ a, b, c ∈ SET : c =< a, b > =⇒ c 6= a, c 6= b, c /∈ a, c /∈ b

6) ∀ A,X ∈ SET : X 6= φ =⇒ X 6= A×X

7) ∀ X ∈ SET : X = X ×X =⇒ X = φ

8) ¬∃ function f = A −→ B, A,B ∈ SET : f ∈ dom(f)

9) ¬∃ functions f1 : A1 −→ A2, . . . , fn : An −→ A1,

A1, . . . , An ∈ SET, a1 ∈ A1 :

fn(. . . f1(a1) . . .) = f1

10) ∀ A,X ∈ SET : X 6= X −→ A

It is important to note that, as seen next, even in ZFC−, that is, without FA, one
can obtain impossibilities of self-reference.

Proposition 2.3.

Within ZFC− we have

1) ∀ function F : A −→ B, A,B ∈ SET :

{x ∈ dom(F ) | x /∈ F (x)} /∈ rng(F )

2) ∀ function F : A −→ P(A), A ∈ SET :

{x ∈ A | x ∈ Rwf} /∈ rng(F )

where R = {< x, y > | x ∈ F (y)}

3) ∀ X ∈ SET : X 6= P(X)

4) ∀ X ∈ SET : X = X −→ φ =⇒ X = {φ}

5) ∀ A,X ∈ SET : X = X −→ A =⇒

=⇒ A = {a}, X = {f}, f(f) = a

6) ∀ X ∈ SET : X = X −→ X =⇒ X = {x}, x = {< x, x >}

The proofs of the above two Propositions 2.2. and 2.3. are rather simple and im-
mediate, and can be found at [1, pp. 25-27]
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Remark 2.3.

Related to 5) and 6) in Examples 2.1. above, let us note the following two kind of
situations encountered so far with sets which have infinitely many brackets, namely :

(2.20) Ω
?
= . . . {{{Ω}}} . . .

(2.21) {0, {1, {2, {3, . . .}}}} ∈ SET

The second one was, in 6) in Examples 2.1. above, proved to exist uniquely, and be
well defined in ZFA, while the first one will be considered in more detail in 2) below.

1) Related to (2.21), we note the following immediate generalization. Let α be any
infinite ordinal number and let us take

X = {xβ | β < α} ⊆ U , A = {β | β < α}

while

exβ = {β, xβ+1}, β < α

Then obviously, we obtain a flat system of equations, therefore (AFA) gives a unique
solution s which, in view of (2.9), has the property

sxβ = {sx | x ∈ bxβ}
⋃
cxβ ∈ SET, β < α

where according to (2.6), (2.7), we have

bxβ = exβ ∩X = {xβ+1}, cxβ = exβ ∩ A = φ, β < α

hence

sxβ = {sxβ+1
} ∈ SET, β < α

which gives

(2.22) sx0 = {0, sx1} = {0, {1, sx2}} = {0, {1, {2, sx3}}} = . . .

where the pairs of brackets { } occur once for each β < α.

Thus (2.21) is the particular case of the above sx0 in (2.22) corresponding to α = ω
which is the first infinite ordinal. In the general case of an infinite ordinalα, the above
sx0 in (2.22) gives instead of (2.21) the set

(2.23) {0, {1, {2, {3, . . . {β, . . .} . . .}}}} ∈ SET
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which contains all β < α.

2) Let us return to (2.20) and consider it as a particular case of the following gen-
eral operation : given a ∈ SET

⋃
U , define the set

(2.24) . . . {{{a}}} . . . ∈ SET

with a pair of brackets { } for each n < ∞. For that purpose, let use the following
notation

{
0

a}
0

= a, {
1

a}
1

= {a}, {
2

a}
2

= {{a}}, . . .

Thus the problem is :

How to define in SET

(2.25) {
ω

a}
ω

∈ SET

where ω denotes the first infinite ordinal number.

Of course, one would want to define (2.25) as a certain kind of "limit" of the se-
quence of sets {

n

a}
n

∈ SET, n ≥ 0.

One way to do that for an arbitrary set a ∈ SET is as follows. Let us denote

0

{a
0

} = a

1

{a
1

} =
0

{a
0

} ∪ {a} = a ∪ {a}

2

{a
2

} =
1

{a
1

} ∪ {a, {a}} = a ∪ {a} ∪ {a, {a}}

3

{a
3

} =
2

{a
2

} ∪ {a, {a, {a}}} = a ∪ {a} ∪ {a, {a}} ∪ {a, {a, {a}}}

4

{a
4

} =
3

{a
3

} ∪ {a, {a, {a, {a}}}} =

= a ∪ {a} ∪ {a, {a}} ∪ {a, {a, {a}}} ∪ {a, {a, {a, {a}}}}
...

It follows that

(2.26)
1

{a
1

} ⊆
2

{a
2

} ⊆
3

{a
3

} ⊆
4

{a
4

} . . .

Thus one can define

(2.27)
ω

{a
ω

} =
⋃
n<ω

n

{a
n

} ∈ SET
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Clearly, that procedure can be extended to all ordinal numbers α.

Thus the above problem (2.25) got solved in general, although not along its initial
formulation.

On the other hand, in the particular case when a = Ω ∈ SET , then in view of the
fact that

Ω = {
n

a}
n

∈ SET, n < ω

one may come up with a definition of (2.25) considered in its initial formulation,
and which hence is simpler than the one given in (2.27), namely

(2.28) {
ω

a}
ω

= Ω ∈ SET

And again, one may extend that definition to all ordinal numbers α, by

(2.29) {
α

a}
α

= Ω ∈ SET

3) The obvious difference between (2.20) and (2.21) is that in the second, there is
an outer pair of brackets { }, while in the first there is none. And such an outer pair of
brackets does indeed define a set in SET , or for that matter, even in SET0, provided
that what is within that outer pair of brackets makes sense in the respective version
of Set Theory. And clearly, for (2.21) such is the case within SET , as seen in 6) in Ex-
amples 2.1. above.

One can also note that the generalization of (2.21) in (2.23) to arbitrary ordinals
α always has an outer pair of brackets { }. On the other hand, in the generalization
(2.29) of (2.20), there is an outer pair of brackets { }, only if α is not a limit ordinal.

4) The flat system of equations in 7) in Examples 2.1., can obviously be general-
ized to arbitrary ordinal numbers α, in a way similar to the generalization in 1) above
of 6) in Examples 2.1.

3. Three Basic Operations

In order to pursue the theory, the following three operations, seldom if at all en-
countered in usual Set Theory, although quite elementary as such, will be needed.

We start with the definition of a fundamental concept.

Definition 3.1.

A set a ∈ SET is called transitive, if and only if

b ∈ a =⇒ b ⊆ a
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or equivalently

c ∈ b ∈ a =⇒ c ∈ a

Clearly, usual sets in mathematics are not transitive. For instance, given a set X
of open subsets in a topological space, then the transitivity of X would imply that for
every open subset E ∈ X , we must also have E ⊆ X . In other words, X must also
contain as elements all the points x ∈ E, for every E ∈ X .

And now, the first basic operation.

Definition 3.2.

Given a set a ∈ SET , its transitive closure is by definition the smallest transitive
set which contains it, and which is denoted by TC(a).

Lemma 3.1.

The transitive closure TC(a) exists for every set a ∈ SET , and it is given by

(3.1) TC(a) =
⋃
{a,
⋃
a,
⋃⋃

a, . . .} ∈ SET

Further, for a ∈ SET , we have

(3.2) TC(a) = {b | b ∈ a}
⋃
{c ∈ b ∈ a}

⋃
{d ∈ c ∈ b ∈ a}

⋃
⋃
{e ∈ d ∈ c ∈ b ∈ a}

⋃
. . .

Here we used the simplifying notation

{c ∈ b ∈ a} = { c | ∃ b ∈ a : c ∈ b }

{d ∈ c ∈ b ∈ a} = { d | ∃ b ∈ a : ∃ c ∈ b : d ∈ c }

...

Note.

The meaning of TC(a), for a given set a ∈ SET , is clear from (3.2) which, obvi-
ously, can be written in the equivalent form

(3.2∗) TC(a) = {x | x ∈ an ∈ . . . ∈ a2 ∈ a1 ∈ a0 = a, n ≥ 0}

Proof.
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We note that⋃
a =

⋃
b∈a b = {c ∈ b ∈ a}

thus⋃⋃
a =

⋃
b∈

⋃
a b = {c ∈ b ∈

⋃
a} = {d ∈ c ∈ b ∈ a}

and so on . . .

Therefore

TC(a) = {x ∈ y ∈ {a,
⋃
a,
⋃⋃

a, . . .}} =

= {x ∈ y = a}
⋃
{x ∈ y =

⋃
a}
⋃

⋃
{x ∈ y =

⋃⋃
a}
⋃

. . . =

= a
⋃

(
⋃
a )
⋃

(
⋃⋃

a )
⋃

. . . =

= a
⋃

(
⋃

b∈a b )
⋃

(
⋃

c∈
⋃
a c )

⋃
(
⋃

d∈
⋃⋃

a d ) . . . =

= {b ∈ a}
⋃
{c ∈ b ∈ a}

⋃
{d ∈ c ∈ b ∈ a} . . .

Examples 3.1.

1) Given a ∈ SET , then TC({a}) is the smallest transitive set which has a ∈ SET
as an element, since

TC({a}) = {a}
⋃
{c ∈ b ∈ {a}}

⋃
{d ∈ c ∈ b ∈ {a}} . . . =

= {a}
⋃
{c ∈ b = a}

⋃
{d ∈ c ∈ b = a} . . . =

= {a}
⋃
{b ∈ a}

⋃
{c ∈ b ∈ a} . . . = {a}

⋃
TC(a)

2) TC(φ) = φ

3) If a ∈ U , then TC({a}) = {a}

Note : if a ∈ U , then TC(a) is not defined, since a /∈ SET

4) If a ⊆ U , a ∈ SET , then TC(a) = a

5) If a ∈ SET , then

TC(a) = φ =⇒ {b ∈ a} = φ =⇒ a = φ
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thus

TC(a) = φ ⇐⇒ a = φ

6) If a ⊆ U , a ∈ SET , then

TC(a) = φ =⇒ a = φ ∈ SET

TC(a) = φ ⇐⇒ a = φ

7) If A,B ∈ SET,A,B 6= φ, a ∈ A, b ∈ B, then

< a, b >= {{a}, {a, b}} ∈ A×B ∈ SET

and

TC(< a, b >) =< a, b >
⋃
{d ∈ c ∈< a, b >}

⋃
⋃
{e ∈ d ∈ c ∈< a, b >}

⋃
. . . =

= {{a}, {a, b}}
⋃
{d ∈ c = {a}

∨
d ∈ c = {a, b}}

⋃
⋃
{e ∈ d ∈ c = {a}

∨
e ∈ d ∈ c = {a, b}}

⋃
. . . =

= {{a}, {a, b}}
⋃
{d ∈ {a, b}}

⋃
{e ∈ d ∈ {a, b}}

⋃
. . . =

= {{a}, {a, b}}
⋃
{a, b}

⋃
{e ∈ {a, b}}

⋃
. . . =

= {{a}, {a, b}}
⋃
TC({a, b}) = < a, b >

⋃
TC({a, b})

8) If A,B ∈ SET,A,B 6= φ,R ⊆ A×B, then

TC(R) = R
⋃
{c ∈< a, b >∈ R}

⋃
{d ∈ c ∈< a, b >∈ R}

⋃
⋃
{e ∈ d ∈ c ∈< a, b >∈ R}

⋃
. . . =

= R ∪ {c = {a}| < a, b >∈ R} ∪ {c = {a, b}| < a, b >∈ R}∪

∪{d ∈ c = {a}| < a, b >∈ R} ∪ {d ∈ c = {a, b}| < a, b >∈ R}∪

∪{e ∈ d ∈ c = {a}| < a, b >∈ R}∪

∪{e ∈ d ∈ c = {a, b}| < a, b >∈ R} ∪ . . . =

= R ∪ {{a} | < a, b >∈ R} ∪ {{a, b} | < a, b >∈ R}∪
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∪{a | < a, b >∈ R} ∪ {b | < a, b >∈ R}∪

∪{e ∈ a | < a, b >∈ R} ∪ {e ∈ b | < a, b >∈ R} ∪ . . .

9) The above goes in particular when R is a function f : A −→ B, or when
R = A×B, and in the last case we obtain

TC(A×B) = (A×B) ∪ {{a} | a ∈ A} ∪ {{a, b} | a ∈ A, b ∈ B}∪

∪{a | a ∈ A} ∪ {b | b ∈ B}∪

∪{e ∈ a | a ∈ A} ∪ {e ∈ b | b ∈ B} ∪ . . . =

= (A×B) ∪ {{a} | a ∈ A} ∪ {{a, b} | a ∈ A, b ∈ B} ∪ TC(A) ∪ TC(B)

10) If X ∈ SET , then

TC(P(X)) = P(X)
⋃
{c | c ∈ b ∈ P(X)}

⋃
⋃
{d | d ∈ c ∈ b ∈ P(X)}

⋃
. . . =

= P(X)
⋃
{c | c ∈ Y ⊆ X}

⋃
{d | d ∈ c ∈ Y ⊆ X}

⋃
. . . =

= P(X)
⋃
{c | c ∈ X}

⋃
{d | d ∈ c ∈ X}

⋃
. . . =

= P(X)
⋃
TC(X)

11) If x, y ∈ U and a = { x, { y } }, then

TC(a) = {x, {y}, y}

since b ∈ a ⇐⇒ b = x
∨
b = {y}, thus c ∈ b ⇐⇒ c = y, hence

TC(a) = a
⋃
{c | c ∈ b ∈ a}

⋃
{d | d ∈ c ∈ b ∈ a} . . . =

= a
⋃
{c | c = y}

⋃
{d | d ∈ c = y} . . . = a

⋃
{y}

�

The second important operation is presented in

Definition 3.3.

We define for sets their support as follows

(3.3) SET 3 a 7−→ support(a) = TC(a)
⋂
U
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Further, a set a ∈ SET is called pure, if and only if

(3.4) support(a) = φ

Note.

The meaning of support(a), for a set a ∈ SET , is easy to see, based on (3.2∗),
namely

(3.3∗) support(a) = {x ∈ U | x ∈ an ∈ . . . ∈ a1 ∈ a0 = a, n ≥ 0}

in other words, support(a) is the set of all ur-elements x ∈ U , if there exist any, with
which finite descending sequences x ∈ an ∈ . . . ∈ a1 ∈ a0 = a, with n ≥ 0, that start
with the set a do terminate.

Consequently, pure sets a ∈ SET do not have such finite descending sequences,
but only infinite ones, namely

. . . ∈ an ∈ an−1 ∈ . . . ∈ a2 ∈ a1 ∈ a0 = a

�

Finally, the third important operation is presented in

Definition 3.4.

(3.5) U ⊃ A 7−→ Vafa[A] = {a ∈ SET | support(a) ⊆ A}

and clearly, Vafa[A] is always a proper class.

We also denote

(3.6) Vafa[φ] = Vafa = {a ∈ SET | a is a pure set}
�

Clearly

(3.7) Vafa[A] ⊆ SET

therefore

(3.8) Vafa[A]
⋂
U = A

⋂
Vafa[A] = φ, A ⊆ U

Also, if a ∈ SET , then we have seen that

TC(a) = φ ⇐⇒ a = φ
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therefore

a = φ =⇒ support(a) = φ

Also, if a ⊆ U , then we have seen that

TC(a) = a

therefore

support(a) = a

If x, y ∈ U and a = { x, { y } }, then we have seen that

TC(a) = {x, {y}, y}

thus

support(a) = TC(a)
⋂
U = {x, {y}, y}

⋂
U = {x, y}

4. Graph Formulation

In this section we follow the presentation in [1], without however the proofs.

We consider directed graphs (N,E), where N is the set of nodes and V ⊆ N ×N is
the set of vertices. A vertex (n, n ′) ∈ V can be denoted by n→ n ′. Thus

n0 → n1 → n2 → . . .

is a finite or infinite path

The graph (N,E) is called a well-founded graph, if and only if it has no infinite path

We also denote

N 3 n 7−→ [n >= {n ′ ∈ N | (n, n ′) ∈ E }

N 3 n 7−→ < n ] = {n ′ ∈ N | (n ′, n) ∈ E }

Given a directed graph (N,E) and n0 ∈ N , we call (n0 ∈ N,E) a pointed graph.

A pointed graph (n0 ∈ N,E) is called an accessible graph, if and only if

∀ n ∈ N : ∃ path n0 → . . .→ n
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An accessible graph (n0 ∈ N,E) is called a tree with root n0, if and only if

∀ n ∈ N : ∃ ! path n0 → . . .→ n

A decoration of a directed graph (N,E) is any mapping S : N −→ Set, such that

∀ n ∈ N : S(n) = { S(n ′) | n ′ ∈ [n > }

Example 4.1.
3
•

�
�
�

�
�
�

�
�
�	
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@
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�
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let S be any decoration

then [ 0 > = φ, thus S(0) = φ = 0

and [ 1 > = 0, thus S(1) = {S(0)} = {φ} = 1

while [ 2 > = {0, 1}, thus S(2) = {S(0), S(1)} = {0, 1} = 2

finally [ 3 > = {0, 1, 2}, thus S(3) = {S(0)S(1), S(2)} = {0, 1, 2} = 3

Mostowski’s Collapsing Lemma 4.1.

Every well-founded graph has a unique decoration.
�

A picture of a set A is any accessible graph (n0 ∈ N,E) which has a decoration S
such that A = S(n0)

Corollary 4.1.

Every well-founded accessible graph is a picture of a unique set.

Proposition 4.1.

Every set has a picture.
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Proposition 4.2.

The ANTI-FOUNDATION AXIOM (AFA) has the equivalent formulation :

AFA AXIOM

Every directed graph has a unique decoration.

Corollary 4.2

Every accessible graph is the picture of a unique set.

There exist non-well-founded sets.

5. Comments, and Beyond

Self-reference has for quite a while by now happened to have acquired a rather
automatic and somewhat thoughtless bad reputation as being but a source of unde-
sirable paradoxes.
One of the more memorable moments in this regard was in ancient Greece, when the
man from Theba came to Athens and stated in front of Athenians that : "All Thebans
are liars !"
Nearer to our own days, in 1903, Russell’s Paradox reformulated that ancient story
within Set Theory which was then emerging as the basis of modern mathematics,
and thus further aggravated the age old negative reflexes regarding self-referentiality.

On the other hand, as anthropologists tell us, three fundamental themes in hu-
man thought deeply rooted in prehistoric and pre-literate times have been self-referentiality,
infinity and change.

Regarding the first, which is of main interest here, countless images of a snake bit-
ing its own tail are a testimony. Also, ancient Vedic wisdom saw it as the foundational
aspect of reality. As for the ancient Hebrews, in Exodus 3:14 of the Old Testament,
they considered it to be nothing less than the very name of God.
In this way, with the self-referential snake - rendered harmless as long as it is busy bit-
ing its own tail - as much as with the ancient Hindus or Hebrews, self-referentiality
was not at all a horror to be avoided by all means. On the contrary, it was a rather
sacred foundational aspect of the whole of reality ...

But then, later, came the man from Theba ...
And in our days, as a reinforcement in the very foundations of mathematics upon Set
Theory, we have been facing Russell’s Paradox ...

As it happens, however, a turn was taken in [5] back to ancient, pre-Athenian wis-
dom. And self-referentiality was in fact found to be of a positive practical interest, an
interest which could not be addressed in other ways, [1-3].
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But to return to what may be seen as more of an everyday mathematics, and actu-
ally, physics as well. Recently it was noted that such an elementary and basic concept
like orthogonality can in fact be defined in arbitrary vector spaces without any scalar
product, provided a self-referential definition is employed, [13].
The relevance of that in modern physics is obvious. Indeed, in Quantum Mechanics,
for instance, the standard model is based on Hilbert spaces where orthogonality is
essential and has considerable physical meaning and interpretation.

However, self-referentiality may turn out to have far larger and deeper impact in
mathematics. In this regard, let us mention a few areas where, given long ongoing
deeper underlying difficulties so far not treatable without self-referentiality, one may
at last find a more appropriate approach by suitable self-referential definitions of ba-
sic concepts.

For instance, the usual concept of topology, introduced by Hausdorff in 1914, suf-
fers among others from the fact that the respective category is not Cartesian closed.
In other words, given three topological spaces X, Y and Z, we typically do not have
the equality C(X×Y, Z) = C(X, C(Y, Z)) between the respective spaces of continuous
functions.
That, as well as other deficiencies of the usual concept of topological space have dur-
ing the last decades been addressed by various more general concepts of so called
pseudo-topologies, [15]. The fact, however, remains that the variety of pseudo-topological
concepts evolved so far, and defined of course without self-reference, give the im-
pression of a series of ad-hoc disparate steps which do not seem to manage to touch
in a more unifying manner the deeper meaning of topology.

Probability theory is another area of mathematics where the standard Kolmogorov
model has manifest deficiencies. One that turns up from the very beginning is that
each point x ∈ X = [0, 1] has the probability zero with the usual measure, thus prob-
abilistically it is redundant. Yet the set of all such points cannot be eliminated, since
then one would remain with the empty set. And this is in sharp contradistinction
with what happens in the case of a finite or countable probability space X, where
each point of zero probability can be eliminated, and one remains with a simplified
model X0 which is isomorphic from the point of view of probability. Further well
known difficulties with the standard Kolmogorv model are found in the study of con-
tinuous time stochastic processes.
It is therefore an open question of some effective interest whether a self-referential
definition of probability space may help in overcoming such difficulties. In this re-
gard it is worth noting that, while the Loeb nonstandard approach to probability
brought with it a number of advantages, it has nevertheless not been able to address
satisfactorily the mentioned, as well as other difficulties.

The concept of computability has been of major interest during the last decades.
As for the nature of its definition, the present relevance of the related Church-Turing
Thesis can be seen as showing a certain lack of sufficient insight, and thus it can
appear as an inadequacy. In this regard, one may consider the possibility of a self-
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referential definition of the concept of computability.

Complexity, among other realms in computation, is another fundamental modern
concept in mathematics. And then, as its own name may possibly suggest, perhaps,
the present day simple non-self-referential definitions for it may actually be rather
inappropriate ...

So much for avoiding the alleged horrors of self-referentiality ...

And as a sign of the power of persistence of age old negative connotation attached
to self-referentiality, one can note that major recent contributions to the subject still
use a negative terminology, such as "non-well-founded sets" or "vicious circles" ...

And now, let us consider a possibly yet older, more universal, and so far incontro-
vertible horror, namely, that of contradiction.

Indeed, in this regard, there seems not to be found any controversy of any signif-
icance whatsoever throughout known human history, with all the evidence pointing
to the universal commandment of : "One must avoid contradiction !"

And yet, so strangely, ever since we so essentially use our modern electronic digi-
tal computers, we have been basing so much, and in such an essential manner, on a
very simple, clear and sharp contradiction.
Indeed, rather not consciously known to most of us, such computers - even when
seen as operating only on non-negative integers - function according to the follow-
ing :

CONTRADICTORY SYSTEM OF AXIOMS :

• the well known Peano Axioms

plus the axiom :

• there exists M >> 1, such that M + 1 = M

where the respective M, called machine infinity, may typically be larger than 10100.

So much for avoiding the alleged horrors of contradictions ...

Here however, apparently not having any known ancient wisdom to return to, a
genuinely novel opening was taken with recent studies of so called inconsistent math-
ematics, [11,12].

What may, beyond all that, be indeed a major new opening is the development
of mathematics which brings together both self-referentiality and contradiction. And
the unprecedented vastness of the respective realms that may become available in
such a way is only to be guessed at present time ...
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6. Axioms of Set Theory

For convenience, we recall here the ZFC Axioms of Set Theory, [8, p. 1].

AXIOM OF EXTENSIONALITY

If two sets X and Y have the same elements, then X = Y.

AXIOM OF PAIRING

For any two sets a and b there exists a set {a, b} that contains exactly a and b.

AXIOM SCHEMA OF SEPARATION

If P is a property with parameter p, then for any sets X and p there exists a set
Y = {u ∈ X | P (u, p)} that contains all those elements u ∈ X which have property P.

AXIOM OF UNION

For any set X there exists a set Y =
⋃
X, the union of all elements of X.

AXIOM OF POWER SET

For any set X there exists a set Y = P(X), the set of all subsets of X.

AXIOM OF INFINITY

There exists an infinite set.

AXIOM SCHEMA OF REPLACEMENT

If a class F is a function, then for any set X there exists a set
Y = F (X) = {F (x) | x ∈ X}.

AXIOM OF REGULARITY OR FOUNDATION

Every nonempty set has an ∈ −minimal element.

AXIOM OF CHOICE

Every family of nonempty sets has a choice function.

Here, we also recall the additional axioms used above.
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ANTI-FOUNDATION AXIOM (AFA)

∀ E flat system of equations : ∃ ! s solution

An equivalent formulation of the above Axiom of Regularity or Foundation is given
in

AXIOM OF FOUNDATION ( FA )

∀ a ∈ SET : < a,∈> well-founded

STRONG AXIOM OF PLENITUDE

There is an operation new(a, b), such that

1) ∀ a ∈ SET, b ⊂ U : new(a, b) ∈ U \ a

2) ∀ a, a ′ ∈ SET, a 6= a ′, b ⊂ U : new(a, b) 6= new(a ′, b)
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