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Abstract

In this paper, we present exact solutions of Einstein’s field equations in two-fluid cosmology in the presence
of a zero-rest-mass scalar field within the framework of a spatially homogeneous Bianchi type-I space-time.
In the two-fluid cosmology, one fluid represents the matter content of the universe and the other one to
the model of cosmic microwave background radiation. Exact solution of field equations are obtained by
assuming that the anisotropy in model is inversely proportional to mth power of the average scale factor.
Two classes of anisotropic cosmological models are obtained, one with the power-law expansion (m 6= 3)
and the other one with exponential expansion (m = 2). The physical and kinematical behaviors of the
models are also discussed in detail.
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1 Introduction

The simplest model of the observed universe is well represented by spatially homogeneous and isotropic
Friedmann-Robertson-Walker (FRW) models, which are in some sense good global approximation of the
present-day universe. But on smaller scales, the universe is neither homogeneous and isotropic nor do we
expect that the universe in its early stages to have these features. At very early times in the evolution
of the universe most of the matter and radiations currently observed are believed to have been created
during the inflation. In fact, there are theoretical arguments from the recent experimental data which
support the existences of an anisotropic phase approaching to isotropic phase leading to consider models
of the universe with anisotropic background. The anomalies found in the cosmic microwave background
(CMB) and large scale structure observations stimulated a growing interest in anisotropic cosmological
models of the universe.

Spatially homogeneous and anisotropic cosmological models play significant roles in the description
of large-scale behaviors of the universe. Bianchi spaces I-IX play important roles in constructing models
of spatially homogeneous and anisotropic cosmologies [1]. Here we confine ourselves to Bianchi type-I
space-time which is the simplest generalization of zero-curvature FRW model. In a Bianchi type-I model
the spatial sections are flat but the expansion or contraction rates are direction dependent. Bianchi type-I
model is extensively studied so for by several authors in different physical contexts.

Several cosmologists studied the two-fluid cosmological models in general relativity. Coley and Dunn
[2] investigated Bianchi type VI0 model in two-fluid cosmology. Pant and Oli [3] obtained two-fluid cos-
mological model for a Bianchi type-II space-time. Further, Oli [4, 5] presented Bianchi type-I space-times
with and without cosmological and gravitational constants. Adhav et al.[6, 7] presented anisotropic two-
fluid cosmological models of Bianchi type-III and V in two-fluid cosmology. Further, Adhav et al. [8]
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investigated a power-law scaling Kaluza-Klein cosmological model dominated by two interacting perfect
fluids. Singh et al. [9] obtained a two-fluid cosmological model of Bianchi type-V with negative constant
deceleration parameter. Samanta [10] investigated an anisotropic Bianchi type-III cosmological model
with variable gravitational and cosmological constants. Samanta and Debata [11] presented a class of
two-fluid models of the universe in a five-dimensional spherically symmetric space-time. Venkateswarlu
and Sreenivas [12] studied anisotropic Kasner type two-fluids cosmological mode in the presence of zero-
rest mass scalar field.

Motivated by above works, we have investigated a two-fluid cosmological models of Bianch type-I
in the presence of zero-rest-mass scalar field. The paper is organized as follows: In Sect. 2, the metric
and field equations are discussed. In Sect. 3, the exact solutions of the field equations are obtained by
using the assumption that the anisotropy in the model is inversely proportional to a power function of
average scale factor of the model which correspond to two classes of the universe, one with power-law
expansion and the other one with exponential expansion. The physical and kinematical features of the
models are discussed separately. Some concluding remarks are outlined in Sect.4.

2 The Metric and Field Equations

We consider the spatially homogeneous Bianchi type-I space-time of the form

ds2 = dt2 −A2dx2 −B2dy2 − C2dz2 (2.1)

where A, B and C are functions of cosmic time t.
The Einstein’s field equations in two-fluid cosmology in the presence of a zero-rest-mass scalar field

in proper units (8πG = c = 1) are

Rµν −
1

2
gµνR+

(
φ,µφ,ν −

1

2
gµνφ,αφ

,α

)
= −Tµν (2.2)

where the energy-momentum tensor Tµν for a two-fluid source is given by

Tµν = T (m)
µν + T (r)

µν . (2.3)

Here T
(m)
µν is the energy-momentum tensor for matter field and T

(r)
µν is the energy-momentum tensor given

by
Tmµν = (ρm + pm)u(m)

µ u(m)
ν − pmgµν (2.4)

and

T rµν =
4

3
ρru

(r)
µ urν − prgµν (2.5)

where ρm, pm and ρr are matter energy density, matter pressure and radiation density respectively. In
comoving coordinate system, the 4-velocity vectors can be taken as

u(m)
µ = (0, 0, 0, 1), u(r)µ = (0, 0, 0, 1). (2.6)

With the help of (2.3), (2.4), (2.5) and (2.6), the field equation (2.2) for the metric (2.1) lead to
following system of equations:

B̈

B
+
C̈

C
+
Ḃ

B

Ċ

C
+

1

2
φ̇2 = −pm −

1

3
ρr, (2.7)
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Ä

A
+
C̈

C
+
Ȧ

A

Ċ

C
+

1

2
φ̇2 = −pm −

1

3
ρr, (2.8)

Ä

A
+
B̈

B
+
Ȧ

A

Ḃ

B
+

1

2
φ̇2 = −pm −

1

3
ρr, (2.9)

Ȧ

A

Ḃ

B
+
Ȧ

A

Ċ

C
+
Ḃ

B

Ċ

C
+

1

2
φ̇2 = ρm + ρr. (2.10)

The scalar function φ satisfies the wave equation φ;µ;ν = 0 which leads to

φ̈+ φ̇

(
Ȧ

A
+
Ḃ

B
+
C

C

)
= 0. (2.11)

An overdot denotes derivative with respect to t.

The average scale factor a and the spatial volume V of the metric (2.1) are defined by

V = a3 = ABC. (2.12)

The physical parameters of dynamical interest in cosmology are the expansion scalar (θ), shear scalar
(σ), Hubble parameter (H) and anisotropic parameter (Am) given by

θ = 3
ȧ

a
=

(
Ȧ

A
+
Ḃ

B
+
Ċ

C

)
, (2.13)

σ2 =
1

2

( Ȧ
A

)2

+

(
Ḃ

B

)2

+

(
Ċ

C

)2
− 1

6
θ2, (2.14)

H =
1

3
(H1 +H2 +H3), (2.15)

Am =
1

3

3∑
µ=1

(
Hµ −H
H

)2

(2.16)

where H1, H2 and H3 are directional Hubble parameters in the direction of x, y and z axes respectively.
An important observational quantity in cosmology is the deceleration parameter q defined by

q = −aä
ȧ2
. (2.17)

The sign of q indicates whether the model inflates or not. The positive of q corresponds to standard
decelerating models, whereas the negative sign indicates inflation.

3 Solution to the Field Equation

We have five equation (2.7)-(2.11) in seven unknown parameter A, B, C, ρm, pm, ρr and φ. Thus to
get a deterministic solution we require two additional conditions involving field variables and physical
variables.

Subtracting (2.7) from (2.8), (2.8) from (2.9) and (2.9) from (2.7)and integrating the results, we obtain

Ȧ

A
− Ḃ

B
=
k1
a3
, (3.1)
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Ḃ

B
− Ċ

C
=
k2
a3
, (3.2)

Ȧ

A
− Ċ

C
=
k3
a3

(3.3)

where k1, k2 and k3 are integration constants. Substitution of (3.1), (3.2) and (3.3) in (2.14) lead to

σ =
k

a3
(3.4)

where k is an arbitrary constant expressible in terms of k1, k2 and k3.
Equations (2.7)-(2.10) suggest that

An = BC (3.5)

where n is a positive constant. We set

B = An/2D, C = An/2D−1 (3.6)

where D is a function of time t. From (3.2) and (3.6), we obtain

Ḋ

D
=
K

a3
, (3.7)

K being an arbitrary constant. The function D can be determined if the average scale factor a is explicitly
known as a function of time. To determine a, we assume that the anisotropy (σθ ) is inversely proportional
to am i.e.

σ

θ
=

b

am
(3.8)

where m(> 0) and b are constants [13]. Substituting (2.13) and (3.4) in (3.8) and solving the resulting
equation, we can obtain

a = (c1t+ c2)1/(3−m), m 6= 3 (3.9)

and

a = l exp

(
kt

3b

)
, m = 3 (3.10)

where c1 = k(3−m)
3b , c2 and l are constants. Without loss of any generality, we take l unity.

Now, from (2.12) and (3.5), we get

A = a
3

(n+1) . (3.11)

3.1 Model for m 6= 3
In this section we use (3.9) to derive a model of the universe. From (3.9) and (3.11), the scale factor A
has the solution

A = (c1t+ c2)3/(n+1)(3−m). (3.12)

Using (3.9) in (3.7) and integrating, we obtain

D = exp

[
K(m− 3)

mc1
(c1t+ c2)m/(m−3)

]
. (3.13)

Hence, the solution to the scale factors B and C are given by

B = (c1t+ c2)3n/2(n+1)(3−m) exp

[
K(m− 3)

mc1
(c1t+ c2)m/(m−3)

]
, (3.14)

C = (c1t+ c2)3n/2(n+1)(3−m) exp

[
−K(m− 3)

mc1
(c1t+ c2)m/(m−3)

]
. (3.15)
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For this model the directional Hubble’s parameters and mean Hubble parameter have values given by

H1 =
c1

(n+ 1)(3−m)(c1t+ c2)
, (3.16)

H2 =
3nc1

2(n+ 1)(3−m)(c1t+ c2)
+

K

(c1t+ c2)
3

(3−m)

, (3.17)

H2 =
3nc1

2(n+ 1)(3−m)(c1t+ c2)
− K

(c1t+ c2)
3

(3−m)

, (3.18)

H =
c1

(3−m)(c1t+ c2)
. (3.19)

The expansion scalar shear scalar, anisotropy parameter and deceleration parameter have expressions as

θ =
3c1

(3−m)(c1t+ c2)
(3.20)

σ =
k

(c1t+ c2)3/(3−m)
, (3.21)

Am =

(
n− 2

n+ 1

)2

+
2K2(m− 3)2

3c21(c1t+ c2)2m/3−m
, (3.22)

q = 2−m. (3.23)

We observe that q = 0 when m = 2; q < 0 when m > 2 and q > 0 when m < 2. Thus the model
corresponding to an accelerating universe for m > 0 and a decelerating universe for m < 2.

The general solution of (2.11) is

φ =
φ0

(c1t+ c2)m/3−m
(3.24)

where φ0 is an arbitrary constant.
We now assume the relation between pressure and energy density of the matter field through the

”gamma-law” equation of state
pm = (γ − 1)ρm, 1 ≤ r ≤ 2 (3.25)

Substituting the values of A, B and C in (2.7)-(2.10) and using (3.25), we find that

ρm =
1

(4− 3γ)

[
80n2c21 + 36nc21 − 36n(n+ 1)(3−m)c21

4(n+ 1)2(3−m)2(c1t+ c2)2
+

2K2

(c1t+ c2)2
+

4φ20
2(c1t+ c2)6/3−m

]
, (3.26)

pm =
(γ − 1)

(4− 3γ)

[
80n2c21 + 36nc21 − 36n(n+ 1)(3−m)c21

4(n+ 1)2(3−m)2(c1t+ c2)2
+

2K2

(c1t+ c2)2
+

4φ20
2(c1t+ c2)6/3−m

]
, (3.27)

ρr =
3

(3γ − 4)

[
18nc21 − 9n2c21 − 12n(n+ 1)(3−m)c21

4(n+ 1)2(3−m)2(c1t+ c2)2
+

γ(9n2c21 + 36nc21)

4(n+ 1)2(3−m)2(c1t+ c2)2

+
(2− γ)K2

(c1t+ c2)2
+

γφ20
2(c1t+ c2)6/3−m

]
. (3.28)

Clearly γ 6= 4/3, which means that we cannot derive cosmological model for the matter disordered radi-
ation from these solutions.

We observe that the spatial volume is zero as time t = − c2c1 provided m < 3. At this epoch ρm, pm,
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ρr, θ and σ are all infinite. Therefore, the model starts evolving with a big-bank singularity at t = − c2c1
and the expansion decreases as the time increases. At t tends to infinity, the physical and kinematical
parameters all tend to zero but the spatial volume becomes infinite, which indicate that the model essen-
tially gives an empty space for large time. The anisotropy parameter tends to a constant as t→∞, and
therefore the anisotropy in the universe is maintained throughout the passage of time. For 2 < m < 3, the
model corresponds to an accelerating universe, whereas for 0 < m < 2 it represents a standard decelerat-
ing universe. The scalar function φ is infinite at the initial singularity and is a monotonically decreasing
function of time and ultimately dies out for large time.

3.2 Model for m = 3

In this section, we derive an inflationary model for m = 3 by using the average scale factor obtained
in (3.10). From (3.10) and (3.11), we can write the cosmic scale factor A in the form

A = exp

(
kt

b(n+ 1)

)
. (3.29)

Substituting (3.10) in (3.11) and integrating, we obtain

D = exp

(
−Kt
k

e−kt/b
)
. (3.30)

Therefore, from (3.6) and (3.29), the solutions for factors B and C are

B = e
knt

2b(n+1) exp

(
−Kt
k

e−kt/b
)
, (3.31)

C = e
knt

2b(n+1) exp

(
Kt

k
e−kt/b

)
. (3.32)

Hence, the model (2.1) with scale factors A, B and C given in (3.29), (3.31) and (3.32) represents an
exponentially expanding universe.

For this model the physical and kinematical parameters are obtained as

H1 =
k

b(n+ 1)
, (3.33)

H2 =
k

b(n+ 1)
−Ke

−kt
b , (3.34)

H2 =
k

b(n+ 1)
+Ke

−kt
b , (3.35)

H =
k

3b
. (3.36)

The expansion scalar, shear scalar, anisotropy parameter and deceleration parameter are obtained as

θ =
k

b
, (3.37)

σ = ke−
kt
b , (3.38)

Am =
1

2

(
n− 2

n+ 1

)2

+
9K2b2

k2
e

−2kt
b , (3.39)
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q = −1. (3.40)

Equation (11) has the general solution

φ = −bφ0
k
e−kt/b (3.41)

where φ0 is an arbitrary constant of integration.

We assume that the pressure and energy density of the matter field obey the gamma-law of equa-
tion of state (3.25). Then from (2.7)-(2.10), we obtain matter density, matter pressure and radiation
density as follows:

ρm =
1

(4− 3γ)

[
10k2n2 + 4nk2

4b2(n+ 1)2
+ (2φ20 − 2K2)e−2kt/b

]
, (3.42)

pm =
(γ − 1)

(4− 3γ)

[
10k2n2 + 4nk2

4b2(n+ 1)2
+ (2φ20 − 2K2)e−2kt/b

]
, (3.43)

ρr =
3

4− 3γ

[
3k2n2 − (1− γ)(k2n2 + 4nk2)

4b2(n+ 1)2
+
γ(2K2 + φ20)− 4K2

2
e−2kt/b

]
. (3.44)

We observe that this model has no finite singularity. We set the coordinates at t = 0. A this epoch the
expansion scalar, shear scalar and anisotropy parameter are constant. The spatial volume increases ex-
ponentially as time increases. The model has constant expansion and decreasing function of time tending
to zero at late time. The matter pressure , matter energy density and radiation density tend to constant
values as t → ∞. The anisotropy parameter tends to a constant for large time, which means that the
anisotropy in the universe is maintained throughout. Since the deceleration parameter q = −1, the model
exhibits early inflation and late time acceleration which is in accordance with the present scenario of
modern cosmology (Reiss et al. [14]; Perlmutter et al. [15]; Schmidt et al. [16] etc.).

4 Conclusion

The theories of gravitation involving scalar fields are very important in modern cosmology since scalar
fields play a vital role in the study of early stages of evolution of the universe. in this paper, we have
presented exact solution of Einstein’s field equations in two-fluid cosmology in the presence of a zero-rest-
mass scalar field for a Bianchi type-I space-time by assuming that the anisotropy in the model is inversely
proportional to mth power of the average scale factor. We have obtained models of the universe in two
types of cosmologies, one with power-law expansion and the other one with exponential expansion. The
universe with power-law expansion has a finite singularity and approaches to an empty space for large
time. The universe with exponential expansion has no singularity and enters into the de Sitter phase
at late times. We have also discussed the physical and geometric behaviours of the cosmological models
separately . The models discussed here will be useful in the investigation of early stages of evolution of
the universe and structure formation of galaxies.
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