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Abstract

In a previous article Nyambuya (2015), we proposed a hypothetical state of the hydrogen atom -
‘Neutronium’. In the typical hydrogen atom, the electron is assumed to orbit the proton, while
in the Neutronium, the converse is assumed, i.e., the proton orbits the electron. In this paper, we
argument that, under certain assumed conditions, a free Neutronium may be unstable while a non-free
Neutronium is stable when confined.
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1 Introduction

In a previous article Nyambuya (2015) [hereafter Paper (I)], we proposed a hypothetical state of the
Hydrogen atom whose name we coined ‘Neutronium’. In the present reading, we ask whether or not this
Neutronium is actually the usual Neutron that we are used to know. If indeed the Neutronium is the
Neutron, then, its properties must match that of the Neutron. We argue here-in that the Neutronium
may be an unstable state. If the lifetime of the Neutronium is set equal to the lifetime of the free Neutron,
then, one can safely entertain the idea of the Neutronium being the Neutron. The instability of a free
Neutron is a hallmark of the Neutron that until this day has not been satisfactory explained. In our
feeble view, we are of the opinion that by demonstrating this instability of the Neutronium, we might
have moved a step closer to understanding not only the Neutronium state, but the Neutron itself.

In the Hydrogen atom, the Electron is assumed to orbit the Proton while in the Neutronium, the
converse is assumed – i.e., the Proton orbits the Electron. The Neutronium atom was conceived after the
following series or steps of careful logical reasoning:

1. The orbit of the Electron around the Proton in the Hydrogen atom are quantized according to the relation:
(rn = aBn

2), where aB is the usual Bohr radius, (n = 1, 2, 3, . . . , etc) and rn is the nth radius of orbit of
the Electron around the Proton in the Hydrogen. The radius of the Hydrogen atom in the ground state
(n = 1) can thus be assumed to be equal to the Bohr radius, aB .

2. From the above, assuming a spherically Hydrogen atom with a radius equal to the Bohr radius and located
in this sphere are the Proton and Electron, it follows from this that the density (%H) of a single Hydrogen
atom in the ground state is thus [%H = 3(mp + me)/4πa3

B ] where (mp,me) are the masses of the Proton
and Electron respectively. Evaluating this, one obtains [%H = 2.70× 103 kg/m3].

3. Since the minimum possible orbit of the Electron in the Hydrogen atom is aB , we began to wonder what
would happen to this Electron the minute the Hydrogen atom is compressed to densities greater than the
(%H)? We know the Hydrogen burning core of stars should have densities (& 5.00×103 kg/m3) much greater
than this. It is at this point that we conceived of the Neutronium.

4. We realised that in the Hydrogen atom, the Electron is considered to be in the Coulomb electrical potential
of the Proton and this literally and technically translates to the Electron orbiting the Proton. We felt that
– from a logical and physics point of view, there really is nothing wrong or sinister in considering a Proton
in the Coulomb electrical potential of the Electron and this – likewise, literally and technically translates
to the Proton orbiting the Electron.

1Correspondence: E-mail: physicist.ggn@gmail.com
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After the conception of the Neutronium state, we did the maths (Nyambuya 2015) and realised that
indeed, the Electron and Proton’s centre of mass can come together and be much closer than permitted
by the quantum mechanical constraints on the Hydrogen atom, i.e. instead of one Bohr radius, they came
closer to about 1836th of the Bohr radius and in the process, emit about 0.02 MeV of energy (radiation).
Our initial thoughts (Nyambuya 2015) on the possible use of this energy output from the Neutronium
by Nature, where that this energy might power Pre-Main-Sequence (PMS) Low Mass Stars (LMS). We
no longer hold this view and the reason for this new position being that, our insight into what this
Neutronium might are getting deeper and better.

We have now began to think of – and to see – this Neutronium state as most likely the Neutron that
we are used to know. This Neutronium might be present in all Hydrogen burning stars helping or taking
part in the fusion of Hydrogen to Helium. We shall not venture – yet – into these – potentially polemical
– ideas now, but – rather – concentrate first on putting some logically credible and acceptable arguments
pointing to the possibility of this Neutronium being a Neutron.

To that end, in §(2), we shall give an exposition of the extension of Maxwellian Electrodynamics
(MED) where in this extension, MED is not described by just one electrical potential – the Coulomb
electrical potential, but has two other potentials, one of which is the Yukawa (1935) potential that we are
used to know and the other a new sinusoidal potential [Paper (II)]. It is this sinusoidal potential that is
key to our likening the Neutronium to the Neutron. Thereafter, in §(4), we apply the sinusoidal potential
to the Neutronium and there-in, make our comparison of the resulting atom with the Neutron.

2 Extended Maxwellian Electrodynamics

We here give an exposition of theory given in the reading Nyambuya (2016) [herefater Paper (II)] where
Maxwellian Electrodynamics (MED) has been extended so that it is described by not just by one electrical
potential – the Coulomb electrical potential, but two other potentials, one of which is the Yukawa (1935)
potential that we are used to know and the other is a new sinusoidal potential. As is well known,
Maxwell (1865)’s Electromagnetic theory is usually understood to constitute two forces i.e., the Coulomb
electrical force and the magnetic force. In this theory of Maxwell (1865), the electrical and magnetic forces
interact interchangeably as a unified force field that submits to a description by a four vector potential
Aµ. This potential Aµ, is known as the electromagnetic four vector potential. The other two forces
present at the nuclear scale i.e., the Strong and Weak force fields, these forces are generally assumed to
be separate phenomenon from Maxwell (1865)’s theory. The extent to which these forces – the Strong
and Weak nuclear forces; are thought to be separate from Maxwell (1865)’s Electromagnetic theory is
that, physicists, have had to find a unified description of Maxwell (1865)’s Electromagnetic theory and
the Strong and Weak nuclear forces (e.g., Weinberg 1967, Glashow 1959, Salam & Ward 1959).

Maxwell (1865)’s celebrated and embellished classical theory of electrodynamics can be summed up
in two beautiful and simple looking tensor equations, namely:

∂µFµν = µ0Jν , (2.1)

which is the source-coupled set of field equations, and:

Fµν,λ + Fλµ,ν + Fνλ,µ = 0, (2.2)

which is the source free set of field equations, where µ0 is the permeability of free space and:

Fµν = ∂µAν − ∂νAµ, (2.3)

is the electromagnetic field tensor (Jµ = %evµ), is the four current and the Greek indices (µ, ν, λ) are
such that [(µ, ν, λ) = 0, 1, 2, 3]. In the four current (Jµ = %evµ), %e is the electronic charge density and
[vµ = (c,v)] is the four velocity with c being the speed of Light in vacuo and v the velocity of the charges,
and the object [Aµ = (Φe,A)], is the electromagnetic four vector potential with Φe being the electric
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potential and A the magnetic vector potential. The electromagnetic four vector potential Aµ satisfies the
Lorenz (1867) gauge, namely:

∂µAµ = 0. (2.4)

In showing or demonstrating that Maxwell’s theory submits to a description of three electrical poten-
tials, one will not need equation (2.2). With the Lorenz (1867) gauge (2.4) taken into account, equation
(2.1) yields the well known four Poisson-Laplace equation for electrodynamics, namely:

�Aν = µ0Jν , (2.5)

where � is the four Laplacian or the D’Alembert operator defined as:

� = ∇2 − 1

c2
∂2

∂t2
. (2.6)

Now, taking the component (ν = 0) of equation (2.5), we will have:

∇2Φe −
1

c2
∂2Φe

∂t2
=
%e

ε0
. (2.7)

where ε0 is the permittivity of free space.
We will consider the natural time-dependent radial solutions of (2.7) for a point charge. By natu-

ral solutions we mean those solutions which are separable when expressed in spherical coordinates i.e.
[Φe(r, θ, ϕ, t) = Φe(r)Φe(θ)Φe(ϕ)φe(t)]. Since we are considering only the time-dependent radial solu-
tions, this means we are considering the solutions [Φe(r, t) = Φe(r)φe(t)]. For simplicity, we will consider
the vacuum solutions (%e ≡ 0) of equation (2.7).

Substituting [Φe(r, t) = Φe(r)φe(t)] into equation (2.7) and separating the time and space variables,
we will have:

∇2Φe(r)− 1

c2

[
1

φe(t)

∂2φe(t)

∂t2

]
Φe(r) =

%e
ε0φe(t)

. (2.8)

For the time-dependent component, the solutions that we obtain for the vacuum (%e ≡ 0) solutions are
the same as those for the non-vacuum (%e 6= 0) solutions; so there really is no need to find the complicated
solution for the general case of the non-vacuum. We shall assume:

1

φe(t)

∂2φe(t)

∂t2
= µ2c2, (2.9)

where µ is a ‘constant’ and:

ε(t) = ε0φe(t). (2.10)

Substituting (2.9) and (2.10) into (2.8), we will have:

∇2Φe(r)− µ2Φe(r) =
%e

ε(t)
. (2.11)

Setting (%e ≡ 0), one finds that there are three natural cases to be considered and these are (µ2 = 0),
(µ2 > 0) and (µ2 < 0). This implies that there will be three solutions for Φe(r, t) and these will correspond
to three solutions for Φe(r) and φe(t). Let us – for a particle with electrical charge q, write these three
solutions with a superscript label as [Φej(r, t) = Φej(r)φej(t)] where “j” takes three values i.e., (j = 0)
corresponding to (µ2 = 0); (j = 1) corresponding to (µ2 > 0); and (j = 2) corresponding to (µ2 < 0).
For Φe0(r, t), which corresponds to the case for (µ2 = 0), we have the Coulomb potential:
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Φe0(r, t) =
1

4πε0(t)

q

r
, where

1

ε0(t)
=

(ω0t± 1)

ε0(0)
. (2.12)

For Φe1(r, t), which corresponds to the case for (µ2 > 0), we have the Yukawa (1935) potential:

Φe1(r, t) =
1

4πε1(t)

qe−µ1r

r
, where

1

ε1(t)
=
e−ω1t

ε1(0)
. (2.13)

Lastly, for Φe2(r, t), which corresponds to the case for (µ2 < 0), we have a new sinusoidal potential:

Φe2(r, t) =
1

4πε2(t)

q cos(µ2r + θ)

r
, where

1

ε2(t)
=

cos(ω2t+ φ)

ε2(0)
. (2.14)

With three potentials, one may wonder which of the three acts on a given particle and if so, what are the
reasons for that potential acting on that potential. The hypothesis that we here make is that all these three
potentials are present simultaneously in any fundamental particle system that carries electronic charge
such as Proton, Electron etc. The resultant or effective electrical potential Φeff(r, t), should therefore –
be given by the sum total of the three potentials, i.e.:

Φeff(r, t) =

2∑
j=1

Φej(r, t). (2.15)

The ‘constants’ εj and µj are assumed to be such that:

c =
1√

εj(t)µj(t)
. (2.16)

It is important to note that, for every potential Φej , there is a corresponding ‘magnetic vector’ potential
Aj , so that we have a complete four vector: [Aµj = (Φej ,Aj)].

3 Neutronium

The Schrödinger (1926) equation for the Electron [mass me and electronic charge (q = e)] orbiting inside
the Proton’s Coulomb potential (V = −e2/4πε0r), is given by:

− ~2

2me
∇2Ψe + VΨe = i~

∂Ψe

∂t
, (3.1)

where Ψe is the Schrödinger (1926) wavefunction of the Electron in the Proton’s Coulomb potential, ~ is
Planck’s normalized constant and t is the time coordinate. With the help of Professor Hermann Klaus
Hugo Weyl (1885− 1955), Schrödinger (1926) was able to solve equation (3.1) and demonstrate that the
energy En(H) of the Electron orbiting the Proton is quantized and is given by:

En(H) = −
(

mee
4

8π2ε2
0~2

)
1

n2
, where (n = 1, 2, 3, etc). (3.2)

The theory of the Hydrogen atom assumes that the Electron orbits the Proton and these orbits are
quantized i.e. from the center of mass of the Proton, these orbits have a well ordered placement given by
[rn(H) = n2aB ].

Now, in the case of the Proton orbiting the Electron i.e., the Proton under the direct influence of the
Electron’s Coulomb potential, the corresponding Schrödinger (1926) equation for such a system is [Paper
(II)]:
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− ~2

2mp
∇2Ψp + VΨp = −i~∂Ψp

∂t
, (3.3)

where Ψp is the Schrödinger (1926) wavefunction of the Proton in the Electron’s Coulomb potential. Just
as is the case with the Hydrogen atom, the energy levels [Enp(N )] of the Proton inside the Electron’s
Coulomb potential are such that:

En(N ) = −
(

mpe
4

8π2ε2
0~2

)
1

n2
p

=

(
mp

me

)
En(H) = µpeEn(H), (3.4)

where2:

µpe =
mp

me
= 1836.15267389(17), (3.5)

is the Proton-Electron mass ratio. The spacing [rnp
(N )] of these energy levels is such that:

rnp(N ) =

(
aB
µpe

)
n2
p where (np = 1, 2, 3, . . . , 42). (3.6)

The state (np = 43) corresponds to the Hydrogen atom, therefore, the Neutronium system has only 42
energy states. The total amount of energy released by the Neutronium – as the Proton is forced to the
energy level (np = 42) – by the all-and-ever muzzling gravitational force – and thereafter falling down to
the ground state (np = 1) of the Neutronium atom; is ∼ 0.02 MeV.

4 Neutronium as a Neutron

The above described Neutronium atom is wholly under the action of the Coulomb potential, Φe0. To this
Coulomb potential, we are now going to introduce the new potential Φe1 to operate in the Neutronium
region, i.e. [µ−1

pe aB < r < aB ]. We shall do this by way of assumption about the strength of these three
potentials, Φe0, Φe1 and Φe2. That is to say, we shall assume the following:

1. For the region [r > aB ], the Coulomb electric force Φe0 is the most dominate, the meaning of which is that
the other two potentials (Φe1,Φe2) can be neglected in this region.

2. For the region [µ−1
pe aB < r < aB ], the Φe1-force is stronger than the Coulomb electric force Φ

(1)
e . While this

is the case, its influence is significant in the region and must be considered while Φe2 is neglected.

3. For the region [r < µ−1
pe aB ], the Yukawa (1935) potential Φe2 is stronger than both the Coulomb electric

potential Φe0 and the new sinusoidal Φe1 potential. In the present investigations, we are not interested
in what happens in this region, so, we shall not bother about the physics of this region – at least for the
present reading.

Now – from the foregoing, the resultant potential under both the Coulomb electric potential energy
eΦe0 and the eΦe1 potential energy for the Neutronium in the region [(µ−1

pe aB < r < aB ], is:

Veff(r, t) = − e2

4πε0r
− e2 cos(ω1t+ θ) cos(µ1r + φ)

4πε1r
. (4.1)

We shall not work with this potential energy (4.1) in its exact form but considered its first order approx-
imation under two specially chosen conditions. To that end:

2See “CODATA Value: proton-electron mass ratio” at: https://physics.nist.gov/cgi-bin/cuu/Value?mpsme
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1. Case (1): Let us consider the case where (θ = φ ≡ 0) and (µ1r≪ 1). For these conditions, we will have
[cos(µ1r + φ) ' 1], hence:

Veff(r, t) ' − e2

4πε0r
− e2 cos(ω1t)

4πε1r
= −e

2 [1 + κ01 cos(ω1t)]

4πε0r
. (4.2)

where3 [κ01 = ε0/ε1 ≫ 1]. If we submit this potential energy into the Schrödinger (1926) equation of
the Neutronium, we obtain the energy Ẽnp(N ) of the Neutronium under the additional action of the
Φe1-generated force, we obtain:

Ẽnp(N ) = [1 + κ01 cos(ω1t)]
2 Enp(N ), (4.3)

and the orbits are located at:

r̃np(N ) =
1

µpe

(
aB

1 + κ01 cos(ω1t)

)
n2
p, (4.4)

and under the above stated conditions, the corresponding force (Feff) acting in this region is given by:

Feff(r, t) ' −e
2 [1 + κ01 cos(ω1t)]

4πε0r2
. (4.5)

This force (4.5) will periodically (with a period of 2π/ω1) change from being a repulsive to being attractive.
What this means is that during the cycle when [Feff(r, t) < 0], the Proton will orbit the Electron and once
[Feff(r, t) < 0], the Proton will be ejected out of its orbit, hence – in this instance, the Neutronium will be
unable on time-scales determined by the period 2π/ω1.

2. Case (2): Let us consider the case where (θ = φ ≡ π/2) and (µ1r≪ 1). For these conditions, we will have
[cos(µ1r + φ) ' µ1r], hence:

Veff(r, t) ' − e2

4πε0r
− µ1e

2 sin(ω1t)

4πε1
. (4.6)

If we submit this potential into the Schrödinger (1926) equation of the Neutronium, we obtain the energy
Ẽn(N ) of the Neutronium under the additional action of the Φe1-Force, we obtain:

Ẽnp(N ) = Enp(N )− µ1e
2 sin(ω1t)

4πε1
= Enp(N )− ε sin(ω1t). (4.7)

where (ε = µ1e
2/4πε1) and the orbits are located at:

r̃np(N ) =

(
aB
µpe

)
n2
p = rnp(N ), (4.8)

and under the above stated conditions, the corresponding force (Feff) acting in this region is given by:

Feff(r, t) ' − e2

4πε0r2
. (4.9)

Unlike the force (4.5), the force (4.9) is not periodic – it is the typical Coulomb attractive force between a
Proton and an Electron. In this instance – despite the periodicity in the energies of the energy levels, we
expect the Neutronium to be ‘stable’, that is, unlike in the Case (1), the Proton will not be eject out of its
orbit.

3This condition is required if in the region [µ−1
pe aB < r < aB ], the Φe1 potential energy is to be much stronger than the

Coulomb potential energy.
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If the stated conditions leading to equations (4.2) and (4.6) are what obtains in the Neutronium atom –
then, what equations (4.2) and (4.6) are telling us is that, the energy of the energy levels of the Neutronium
will vary sinusoidally with time and this directly translates to the fact that these energy levels have no
fixed energies like happens in the typical Hydrogen atom. Of these two conditions presented leading to
equations (4.2) and (4.6), the most desired for us are the conditions leading to equations (4.2), because
these lead to an unstable Neutronium atom which ejects the Proton out of its orbit. The Neutronium
atom is unstable on the time scale, τ : (τ = 2π/ω1). If τ is set such that it equals the lifetime of the
Neutron that we are used to know i.e. τ ∼ 882.00 ± 2.00 s (see e.g., Nakamura & Particle Data Group
2010), then, the Neutronium (free or bound) will be unstable on this timescale. It is this property that
‘seduces’ us in the direction of thinking that the Neutronium can be thought of as being a Neutron,
and not just some strange form of matter belonging perhaps to the realm and domains of science fiction
movies.

5 Discussion

We have here-in shown that an equanimous and meticulous application of Maxwell’s Extended Theory
of Electrodynamics can lead one to a description of the Neutronium that fits that of the Neutron under
carefully chosen conditions. What this means is that – until such a time that the existence of the
Neutronium state is proved or disproved – we can, in the meantime, think of the Neutronium as being a
Neutron or a quasi -Neutron.

Received October 21, 2017; Accepted December 29, 2017
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