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Higgs Field & Unruh Effect

Lawrence B. Crowell 1

Abstract

The Unruh effect describes radiation detected by an accelerated detector. The vacuum seen in an
inertial frame of Minkowski spacetime is a pure vacuum, while in a Rindler wedge it is a vacuum plus
blackbody distribution of radiation. While the detector on the accelerated frame will witness this
radiation, but the inertial observer witnesses no radiation. However, the inertial observer might be able
to catch the accelerated object and find it will be thermalized to equilibrium with Unruh radiation.
In this paper the Unruh radiation is examined primarily from the perspective of an accelerated body
as observed in an inertial frame. This is then an exercise in quantum fields with a cubic interaction
corresponding to the interaction of the vacuum with the accelerated body. The analysis is done in a
solid state physics format to illustrate the essential ideas.
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1 Introduction

Physics is holographic, which implies horizons or boundaries that conceal complete symmetry[1]. The
number of degrees of freedom in the bulk volume is a vast redundancy [2], where only charges or hair on
the boundary or horizon are real charges that carry real information. The singularity of a black hole or for
a cosmology concealed by an event horizon then contains this complete symmetry with little information
content. It is also the case that the Higgs field conceals symmetry, called secret or hidden symmetry[3],
where the symmetry of the Lagrangian at a low energy is no longer the symmetry of the physical low
energy vacuum. These two physics may then be fundamentally related to each other. This is seen by the
examination of the Unruh effect from the perspective of the inertial frame.

The inertial observer witnesses a body moving with the invariant momentum interval

m2 = E2 − p2.

This is used with the case of a body accelerating in the z direction with pz >> px and py. We then have

E =
√
p2x + p2y + p2z + m2 = pz

√
(p2x + p2y + p2z + m2)/p2z

' pz +
1

2
(p2x + p2y + m2)p−1z (1.1)

and so we have

(E − pz)pz =
1

2
(p2x + p2y + m2).

The right hand side is the Lorentz boosted energy and the left hand side is a classical-like Hamiltonian

with a potential m
2

2 .

Now consider an acceleration in the z direction so that from s to s + δs proper interval

pz(s + δs) = pz(s) + mazδs.

1Correspondence: Lawrence B. Crowell, PhD, Alpha Institute of Advanced Study, 2980 FM 728 Jefferson, TX 75657 and 11
Rutafa Street, H-1165 Budapest, Hungary. Tel.: 1-903-601-2818 Email: lcrowell@swcp.com.

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com

Published by QuantumDream, Inc.

lcrowell@swcp.com


Prespacetime Journal | September 2017 | Volume 8 | Issue 9 | pp. 1092-1100 1093

Crowell, L. B., Higgs Field & Unruh Effect

The right hand side has then

(E − pz(s + δs))pz(s + δs) = (E − pz(s) − mazδs)(pz(s) − mazδs)

' (E − pz(s))(pz(s) − mazδs) − pzmazδs.

Since the energy E is transformed by the acceleration then toO(δs) we can treat (E − pz(s))(pz(s)−mazδs)
as H ′ and we have

H ′ =
1

2
(p2x + p2y + m2) + pzmazδs.

Now consider this within the context of a scalar field theory. The homogeneous term is then with az = 0

H =
1

2
|∇φ|2 +

1

2
m2|φ|2.

With the left hand side as H = H0 + |∂φ/∂t|2. The inhomogeneous term pzmazδs is constructed with
the associations pz : φ,m : φ2 and az : φ and the time interval δt → ω−1 the frequency of the scalar
field and ω : φ This means the acceleration is a cubic interaction term and we write

H0 =
1

2
|∇φ|2 − 1

2
|∂φ/∂t|2 +

1

2
m2|φ|2 + g|φ|2(φ + φ∗),

where g has units of inverse length. We may now write this in greater generality with the inclusion of a
quartic term |φ|4. The mass is replaced with m2 → − µ2 and this is a perturbed quartic scalar field for
the Higgs. This is the most general form of a scalar potential that is renormalizable.

We consider various interactions. The free particle has the potentialm2 so that �Df (x− y) = δ4(x− y)
leads to the propagator of the form[4]

〈0|φ(y)φ(x)|0〉 =
1

4π

1

|x − y|2
,

and we let the separation δ = |x − y| between the fields be cut off at δ. This is renormalization theory
in a nutshell. We are primarily interested in the vacuum bubble seen in figure 1.

This will have the amplitude g
∫∞
δ

∆−6d4∆ which is evaluated at the cutoff as gδ−2. The cut off in
distance δ is adjusted to the acceleration; the larger the acceleration the more precise is the probe. This
is then δ ∼ 1/az, and with the g = pzmazω

−1 we have the above amplitude g
∫

∆−6d4∆ ∼ az.

Consider the interaction with the condensate of the Higgs field. A condensate of a scalar field φ is
such that it has a nonzero vacuum expectation or that 〈0|φ(x)|0〉 = ε, where ε refers to the vacuum
expectation value for the mass of the scalar field. We then have that the vacuum state of the field φ(x)
is mapped from the vacuum expectation of the field φ(x) by

|0〉 = U†|Ω〉,
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which means that |0〉 is a coherent state constructed from a condensate of vacua states and correspondingly
that

φ(x) = Uφ(x)U†.

Now write the operator U = exp(c(a − a†)), for the a and a† operators acting on the vacua condensate
|Ω〉, and for the model above we have c = g|φ|2. In the case the operators are fermionic this is similar

to the BCS state (uk − vka
†
ka
†−k|0〉[5]. There is in this case a gap in energy between |0〉 and |Ω〉 that

is analogous to the BCS energy gap. The field φ(x) on the |0〉 vacuum is

〈0|φ(x)|0〉 = 〈Ω|Uφ(x)U†|Ω〉 = 〈Ω|(1 + c(a − a†) + . . . )φ(x)(1 − c(a − a†) + . . . )|Ω〉

= 〈Ω|φ(x)|Ω〉 + c〈Ω|[(a − a†), φ(x)]|Ω〉 + ...

Clearly the first term is zero which evaluates the condensate field on its vacuum, and the second term
with the Fourier expansion of the field

φ(x) = i
∑
k

(a(k)e−ikx + a†(k)eikx)

means
〈0|φ(x)|0〉 = icsin(k0x)c〈Ω|[(a − a†), φ(x)]|Ω〉 +

which evaluates the expectation value ε for the Hamiltonian. The oscillating term is eiεδs with the
association δs → ω−1 ∼ 1/az. The condensate with the cubic field potential term then leads to the
〈0|exp(−2πH/az)|0〉 evaluating

〈0|φ(x)|0〉 = 〈Ω|φ(x)|Ω〉 +

〈
0
∣∣∣ ∂
∂σ

exp(−2πHσ)
∣∣∣0〉

for σ = 1/az. This means the partition function in a path integral contributed by the acceleration is
exp(−2πH/az), which corresponds to Unruh radiation.

This is a perturbation on the quartic potential of the Higgs field so that it appears in figure 2. This
then leads to an effective theory that connects Unruh radiation with the Higgs field and its interactions
with quantum fields. This asymmetric potential is similar to that in the Coleman-de Luccia vacuum
bubble model of inflationary cosmology[6].
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2 General scalar field

Consider the case for the Higgs potential modified by accelerated mass as

V (φ) = − 1

2
µ2|φ|2 + g(E)|φ|2(φ + φ∗) +

1

2
λ|φ|4 (2.1)

which modifies the standard Higgs potential Vh(φ) = − 1
2µ

2|φ|2 + 1
2 |φ|

4 with a cubic term. The
manner of derivation was to consider a highly boosted system which is effectively nonrelativistic. Now
consider this as a Schrodinger type of problem. The field configuration for g = 0 has a minima as
∂Vh(φ)/∂φ∗ = 0, which occurs at φ∗φ = µ2/2, or |φ| = µ/

√
2λ. With the cubic term the field settles

at the two values

φ±0 = − 3

2

g

λ
± µ√

2λ

√
1 +

9g2

µ2λ
.

Now for g << µ this is approximately

φ±0 ' ± µ√
2λ
− 3

2

g

λ
+ O(g2)

Now consider small oscillations around the potential with φ0 and the variable |φ| = φ0 + x

V (|φ|) = V (φ0) +
∂Vh(φ)

∂|φ|)

∣∣∣
φ0

x +
1

2

∂2Vh(φ)

∂|φ|2
∣∣∣
φ0

x2 +

= V (φ0) +
1

2
V ′′(φ0)x2.

The potential is then modeled as a circular trough in two dimensions with a minima at a radius
x20 + y20 = µ2/2λ, for φ0 ' µ/

√
2λ. The nonrelativistic potential in standard coordinates is

then
V (x, y) =

ω

2
[(x − x0)2 + (y − y0)2],

which is a potential for two coupled harmonic oscillators with x0 = y0 = µ/
√

2λ.

The Hamiltonian H = 1
2p

2 + V (x, y) leads to the harmonic oscillator operators

A =

√
ω

2

(
x − x0 +

i

ω
px

)
, A† =

√
ω

2

(
x − x0 +

i

ω
px

)

B =

√
ω

2

(
y − y0 +

i

ω
py

)
, B† =

√
ω

2

(
y − y0 +

i

ω
py

)
where is is easy to show the total Hamiltonian is H = 1

2 (A†A + B†B). We also have A = a −
√
ω/2x0

etc and this leads to the Hamiltonian

H = ω(a†a + b†b) −
√
ω

2
X0(a† + b† + a + b)

for X = x0 = y0, and constant term in X2 removed. In addition the terms linear in the field operators
are removed as being off diagonal. This means the interaction is quadratic for a standard set of harmonic
oscillators plus a linear term.

This Hamiltonian has the cubic perturbation term V3 = g(E)|φ|2(φ+ φ∗) in addition. For g(E) = gω
this perturbing potential is replaced with

V3 = gω
[
(a†a + b†b)X0 + a†aa† + aa†a + b†bb† + bb†b

]
, (2.2)
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where terms a†
2
, b†

2
a2, b2 and linear in these operators are dropped. The total Hamiltonian

H = ω(1 + 6gX0)(a†a + b†b) + gω(a†aa† + aa†a + b†bb† + bb†b).

may be analyzed with perturbation of the cubic interaction terms on the diagonalized Hamiltonian with
the addition of a φ4 term without V3. The sign of the mass term, with −µφ2 terms in the Hamiltonian,
is absorbed into the ω. Without the quartic potential the solution would contain hyperbolic functions
which imply an unstable system.

The total Hamiltonian may be simplified by removing the redundancy of the a, a† and b, b† operators.
These are also generalized for summations over states with

H = (1 + 6gX0)
∑
k

ω(k)a†kak +
∑
k,q

ξ(q)(a†k+qa
†
−k−qa−ka−q)

+ g
∑
k,q

ω(k)[a†k−qaka
†
q + ak−qa

†
kaq].

The Hamiltonian for g = 0 may be diagonalized with the operators ak and a†k transformed at

ak = Akαk + Bkα
†
−k

a†k = Akα
†
k + Bkα

†
−k

a−k = Akα−k − Bkα
†
k

a†−k = Akα †k − Bkα−k.

The elements Akand Bk are the Bogoliubov coefficients with cosh(θk) = Ak and Bk = sinh(θk). The
Hamiltonian is then in quadratic form as

H = (1 + 6gX0)
∑
k

ω(k)α†kαk +
∑
k,q

ξ(q)AkBkAk−qBk−q (2.3)

+
∑
k

[ω(k)(A1
k − B2

k) − 2AkBk
∑
q

Ak+qBk+q](α
†
kαk + α†−kα−k)

+
∑
k

[2ω(k)AkBk + (A2
k − B2

k)
∑
q

Ak+qBk+q](α
†
kα
†
−k + αkα−k)

+ O(α†k+qα
†
−k−qαkα−k).

The third term must vanish so we have∑
k

[2ω(k)AkBk + (A2
k − B2

k)
∑
q

Ak+qBk+q] = 0.

The redefined cubic interaction produces the terms

V (3) = gω
(
Ak−qAqAk(α†k−qαkα

†
q + αk−qα

†
kαq) (2.4)

+ Ak−qBqBk(α†k−qα−qα
†
−k + αk−qα

†
−qα−k)

)
The last part of this interaction is a Hamiltonian, while the first 6 terms are self-interaction terms of the
scalar field.
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The model is now modified so the cubic term is g(E)Γ†(φ + φ∗)Γ, which are Yukawa-like coupling
Lagrangians between the Higgs particle to the vector boson. In the case the Higgs particle is absorbed
the gauge boson W, Z absorbs the degree of Goldstone boson, or where the scalar is produced this is
Higgs particle production or Higgs-stralung processes. This could just as well be treated as Yukawa-like
interaction terms for fermion fields g(E)ψ̄(φ + φ∗)ψ. For gauge field Γ = (A, W, Z) the α†, α are
replaced by operators b, b† are employed to describe photons and b, b† describe the weak currents. The
cubic interaction term is then

V (3) = g
∑
k,q

ω(q)
(
Ak−qAqAk(b†k−qα−qbk + bk−qαqb

†
k) + gAk−qα

†
k−qBqBk(b†k−qα

†
kb−q + bk−qα−qb

†
−k)
)

(2.5)

+ g
∑
k,q

ω(q)
(
Ak−qAqAk(b†k−qαkb

†
q + bk−qα

†
kbq) + gAk−qBqBk(b†k−qα−qb

†
−k + bk−qα

†
−qb−k)

)
The first four of these terms describe the production or absorption of Goldstone bosons, a form of
Higgsstralung, by the gauge field. The next four describe the production or absorption of the Higgs
particle or Goldstone boson by the absorption or generation of the gauge fields. These terms correspond
to the processes in the figure 3 below. The cubic potential then results in vacuum bubbles for gauge
particles, plus open triad diagrams that couple the Higgs field to the W± and Z0 gauge fields. The cubic
vacuum bubble in the spacetime diagram for the accelerated observer is set at the origin and extends to
a radius ρ corresponding to a hyperbolic accelerated path. The diagram for the accelerated observer with
a vacuum bubble is seen in figure 4.

An observer on an accelerated frame, with acceleration g, has the observer behind them at a distance
ρ = c2/g. The larger the acceleration the the closer to the horizon the observer is. It is also interesting
that for two particles to remain a constant distance from each other they must have different accelerations.

The Rindler wedge spacetime metric [7] distances are parameterized as

t = ρsinhω, x = ρcoshω

the angle ω is a parametrized time. the metric in the Minkowksi form is then

ds2 = − dρ2 − ρ2dω2 − dy2 + dz2.
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If we euclideanize this so that the metric is not Lorentzian we can then think of the unitary time devel-
opment operator U(t) = exp(−iHt) across region I to region II. We do this to consider the evolution
of a quantum fluctuation that encloses the origin of the diagram above. We then replace i → 1 and the
time is evaluated for the entire loop, think of this as the perimeter of the loop, as t → ρω|2π0 = 2πρ.
We then have the operator U(ω) = exp(−2πρH). The proper distance ρ between the hyperbolic surface
and event horizon is ρ = c2/a, for a the acceleration. The unitary operation e−iHt/~ is replaced with

t/~ − → 2πic2/a. If the cubic coupling term g → ig the 6igX0

∑
k ω(k)α†kαk recovers the Unruh

radiation result for 6gX0t/~ = 2π/kBa so the quadratic term is 2π
∑
k ω(k)α†kαk/kBa. This recovers

for choice of the coupling constant g the Unruh effect and is a way of building Unruh radiation from the
Higgs field. The cubic corresponding to the Higgs field and its interaction with the Z and W± fields
enter into the picture at electroweak unification and perturb the standard result. This would occur as
well with black holes.

3 Phase transitions and the cubic interaction

The physics below the symmetry breaking scale will suppress the terms seen in equation 5. The initial
cubic terms in the transformation diagonal in the quartic field results in an imaginary quadratic term
corresponding to Unruh radiation. At the EW energy and boundary for the recovery of symmetry the
Higgs mechanism enters into the picture. This is a form of phase transition in the Unruh effect.

The high temperature expansion of a one loop effective potential is

V (φ, T ) = − π2

9
T 4 +

λ

24
(3φ2c − σ2)T 2 − λ3/2

12π
(3φ2c − σ2)3/2T

which contains imaginary parts for φ < σ/3. Here φc is the expectation of the scalar field φc = 〈φc〉. The
scalar field obeys a Hamiltonian that is related to the Helmholtz free energy by a Legendre transformation
with the probe current j and j

∫
d3xφ such that

A(j, T ) =
H + j

∫
d3xφ

vol

so the classical field is then

φc =
∂A

∂j
.
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The volume vol ' L3 defines a form of box quantization.
The partition function Z(β) = Tr e−Hβ so that

ln Z(β) = =

∫
vol d3k

(2π)3

(
ωkβ

2
+ ln(1 − e−omegakβ)

)
and the potential V (φ, T ) = A(j, T ) = jφc is

V (φ, T ) =
m

2
φ2c +

∫
vol d3k

(2π)3

(ωk
2

+ β−1ln(1 − e−ωkβ)
)
.

The quadratic expansion of the potential V (φ) simeq V (φc)
1
2∂φφV (φc)(φ − φc)

2 gives

V (φc, T ) = V (φc) +

∫
vol d3k

(2π)3

(ωk
2

+ β−1ln(1 − e−ωkβ)
)
,

with ωk =
√
k2 + ∂φφV . The renormalized effective potential is then

V (φ, T ) =
λ

4
(φ2c − σ2) +

T 4

2π2

∫ ∞
0

x2ln(1 − ef(x))dx +
λ2(3φ2c − σ2)2

64π2

[
ln

(
λ(3σc − σ2)

µ2

)
+

1

2

]
,

for f(x) =
√
x2 + λ(3σc − σ2)/T 2. In this manner the cubic term in the potential, or effective

potential at the one-loop level, is manifested in a broken symmetry theory at the length φc.

4 Discussion

The inertial observer does not witness Unruh radiation. However, the inertial observer will measure an
accelerated mass to have a temperature. This temperature is associated with the Unruh effect, and is
equal to the Unruh temperature for a massive body at equilibrium with Unruh radiation in its inertial
frame. An inertial observer may then interpret the heating of the body according to physics different
from the Unruh radiation of the accelerated frame.

The quadratic term to emerge from the cubic interaction is 6gX0

∑
k ω(k)α†kαk. The termX0 = µ/

√
2λ.

For lower energy processes, for temperature T < 1015K, corresponding to 1015cm/s2 acceleration or a

black hole mass M < 108kg, photons dominate this process and the interaction term is g
√

2ω(k)B2
ka
†
kak

with the vacuum expectation above 〈0|exp(−2πH/az)|0〉. A black hole with a mass greater than this will
be in the symmetry breaking domain of the effective potential. The one loop physics of the Higgs field
then recovers the one-loop physics of accelerated frame physics in spacetime.

The argument with effective potential illustrates how the cubic interaction associated with the coupling
of accelerated massive particles with the vacuum is connected to the Higgs potential. The Higgs field
reduces the symmetry of the vacuum and associated particle states from the symmetries of the Lagrangian.
This means the Higgs field effectively hides symmetry. Event horizons of black holes similarly hide
symmetries and the degree of freedom of particles and fields that enter the black hole. The exterior
observer then observes matter and field that enter a black hole arbitrarily red shifted and as such hidden.
This paper examines the phenomenology of general scalar fields and the effective potential for the Higgs
field to illustrate how measurable aspect of the Unruh effect can be derived. The Higgs field corresponds
to the particle horizon of a Rindler wedge.
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