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Tsirelson Bound, Entanglement & Gravity

Lawrence B. Crowell 1

Abstract

This paper illustrates an isomorphism between the Tsirelson bound of quantum mechanics and
the spacetime metric. This illustrates how spacetime could be seen as quantum mechanics in disguise.
The extension of this with gauge fields and gravitation illustrates further how spacetime can be seen
as the result of quantum mechanics or quantum fields.
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1 Tsirelsion bound and flat spacetime

Suppose we have four operators A1, A2, B1, B2 such that:

A2
i = B2

i = 1

and
[Ai, Bi] = 0

These 4 operators correspond to the observables in Aspect’s experiment [1]. A single source of photons
emits pairs of photons to the left and right measuring apparatuses. At the measurement station a rapidly
moving mirror pushes the photons to be measured for polarization either on direction A1 or A2 for the
left detectors, or B1 or B2 for the right detector. The outcomes are +1 or −1 (thus A2 = B2 = 1). The
Ai commute with Bi because they are spatially separated. This set up is diagrammatically the same as
used in the Bell theorem as diagrammed below

Now define an operator Ĉ as follows:

Ĉ = A1B1 + A2B1 + A2B2 − A1B2 (1.1)
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and it is not hard to show that:
Ĉ2 = 4 + [A1, A2][B1, B2]

By using the triangle inequality it is not hard to see that

|Ĉ2| ≤ 4 + 4, |C| ≤ 2
√

2

This is a derivation of the Tsirelson bound [2].

The operator C appears very similar to the Lorentz metric,

x · y = − x0y0 + x1y1 + x2y2 + x3y3,

which is the metric distance with Lorentz geometry or SO(3, 1). In the case of the Riemann sphere CP 1

the set of conformal transformations are linear fractional transformations

z → az + b

cz + d

where this transformation is isomorphic to PSL(2,C). The heavenly sphere is then the case of the null
metric distance, or equivalently the projective light cone. The product space V of dim = n contains
the Jordan algebra is the v2 = 〈v, v〉 (v ∈ V , 〈u, v〉 is the Rn inner product) so that a spin factor
J(V ) ∼ V ⊕ R (space plus time) such that

(u, α)� (v, β) = (αv + βu, 〈u, v〉 − αβ). (1.2)

Then J(V ) is isomorphic to Minkowski spacetime [3]. This Clifford algebra defined on the right is the
spacetime metric 〈u, v〉 − αβ.

Now let spacetime Vc be represented with the basis elements

u1 = (A1, 0, 0), u2 = (0, B1, 0), u3 = (0, 0, A2)

v1 = (B1, 0, 0), v2 = (0, A2, 0), v3 = (0, 0, B2) (1.3)

and the real line R containing the two elements (A1, B2), it is then easy to see that the C operator can
be expressed according to the Clifford algebra.

The connection between the null condition and the Tsirelson bound might be made by defining the

elements of the real line R as (iA1 +
√

2
√

2, iB2 +
√

2
√

2) with the product is the real valued so this is
−B2A1 + 2

√
2. In that way the modified |C|2 would be zero if it is at the Tsirelson bound, and similar

to a choice of metric signature is negative if outside the Tsirelson bound.

2 Gauge fields and gravitation

In this section a gauge covariant formulation is considered. This starts by looking at transformations of
the operator Ĉ due to a unitary group generated by Lie algebraic elements. This will result in an result
that is not physically correct, which will require a covariant of this theory.

Consider transformations on the four operators Ai, Bi such that A′i = gAi and B′i = g′Bi. This

is a group theoretic form of the textbook gauge transformation ~A′ = ~A + ∇χ[4]. The group elements
are g = exp(iεµE

αUµα ) and g′ = exp(iεµE
αV µα ), where Eα is a root vector in a Lie algebra and Uµα a

vierbein. For small parameter ε the group elements are g = 1 + iεµE
αUµα and g′ = 1 + iεµE

αV µα .
The commutator of the transformed operators is

[A′i, B
′
j ] = [gAi, g

′Bj ] = gg′[Ai, Bj ] + [g, g′]BjAi = gg′[Ai, Bj ] + εµεν [Eα, Eβ ]BjAiU
µ
αV

ν
β .
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The commutators are taken between observables at different locations, for those at the same location
will be rotated by the same transformation with no relative difference resulting between them. The
commutator in the ε small limit is

[g, g′]BjAi = εµεν [Eα, Eβ ]UµαV
ν
β BjAi.

Physically this transformation is a local gauge transformation which occurs between the A1, B1 side of
the experiment and A2, B2 side.

An alternative transformation on the operators is with g = (ε · ∇u) and g′ = (ε · ∇v). This
transformation is a parallel translation rule for the state according to a geodesic flow. In this case we
have that the commutator above is

[A′i, B
′
j ] = gg′[Ai, Bj ] + ε ∧ ε · [∇u, ∇v]BjAi = R(U, V )BjAi,

where R(U, V ) is a curvature operator

The entire operator C is then

C2 = 4 + [A′1, A
′
2][B′1, B

′
2] + εµεν [Eα, Eβ ]UµαV

ν
β (B′1A

′
1A
′
2B
′
2 + B′2A

′
2A
′
1B
′
1 + B′1A

′
1A
′
2B
′
2 + B′2A

′
2A
′
1B
′
1).

The commutators are then [Eα, Eβ ] = NαβEα+β . For the geodesic flow version this is

C2 = 4 + [A′1, A
′
2][B′1, B

′
2]

+ ε2
(
B′1〈A′1R(U, V )A′2〉B′2 + A′2〈B′2R(U, V )A′1〉B′1 + B′1〈A′1R(U, V )B′2〉A′2 + A′2〉B′2R(U, V )B′1〉A′1

)
.

The Riemann curvature is defined by 〈A′1, R(U, V ) A′2〉 = RαµβνA
′
1
α
UµV νA′2

β
. These two cases cor-

respond to first an internal gauge transformation and in the second a spacetime transformation. The
apparatus in this case is held together by materials that provide strength against the curvature.

This redefines the Tsirelson bound. The norm with |gAi| ≤ |g||Ai| and with |g| = 1 we have the
norm

|C2| ≤ 8 + 4ε2(F, R),

where (F, R) is the choice of a field strength from the commutator of Lie algebraic roots, or from the
curvature of spacetime.

This equation is motivating, but it is also wrong. The correspondence between the null metric and
the Tsirelson bound at equality means the two must hold for arbitrary metric. A metric g(X, Y ) that
deviated from the Minkowski case may be expanded in variations Y , δY = ∇xY δx

g(X, Y ′) = g(X, Y ) + g(X, δY ) +
1

2
g(X, δ2Y )

= g(X, Y ) + g (X, ∇xY ) δx +
1

2
g (X, R(V, Y )V ) δx2

The first order term vanishes and the second order term is the geodesic deviation equation. If the geodesic
is null ds = 0, which will still correspond to |C| = 2

√
2

To correct for this we let Ai → Aω = Ai + iα and Bi → Bωi = Bi + iβ. The parameters α and
β obey αβ = ω and αB + βB = 0. In addition we have ω << Ai, Bi. The triangle inequalities in
the Tsirelson bound then have

|AB| → | |AωBω| = (A + iα)(B + iβ)| ≤ |AB| − |ω|
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so that The Tsirelson bound is then

|C2| ≤ 8 − 8|ω| + 4ε2(F, R) (2.1)

The Tsirelson bound is preserved for |ω| + 1
2ε

2(F, R) = 0. This is a form of gauge invariance. In
the case of the gauge field the term ω is a form of the Aharanov-Bohm effect. The instrument operators
Ai, Bi are gauged in a manner similar to P = p + ie

~ A

3 Weyl Curvature and Symmetries

The two considerations, one a gauge transformation defined by the root vectors of a Lie algebra and the
other gravitation, are considered with respect to each other. The Riemann curvature with vanishing Ricci
curvature is the Weyl tensor. For sourceless region the curvature is purely vacuum and given by the Weyl
tensor[5]. Given null vectors Uα the null vector Uαβ = [Uα, Uβ ] is defined. These are eigen-bivectors
of the Weyl tensor [7]

1

2
CµναβU

αβ = λUµν .

Consider the metric composed of the null vectors xα, yα, zα, wuch that zαyα = xαyα = − 1 and
ȳαyα = 1,

gαβ = xαzβ + zαxβ + yαȳβ + ȳαyβ .

There are then three possible null bivectors

Uαβ = −X[αyβ], Vαβ = z[αyβ], Wαβ = − y[αȳβ] −X[αyβ],

so the Weyl tensor is composed as

Cαβµν = Ψ0UαβUµν

+ Ψ1(UαβWµν + WαβUµν)

+ Ψ2(VαβUµν + UαβVµν + WαβWµν)

+ Ψ3(VαβWµν + WαβVµν)

+ Ψ4VαβVµν

,

for Ψi Weyl scalars. These define different physics; Ψ2 gives the vacuum around a central source, such as
a black hole, Ψ4 are transverse modes and Ψ1, Ψ3 are in and out directed longitudinal modes.

Each of the bivectors may be expressed according to a vierbein Ua = Eαuaα, where now the Latin
indices refer to spacetime and Greek indices correspond to an internal space given by the root vectors of

a Lie algebra. We can then see that Uab = 2[Eα, Eβ ]U
[b
β U

a]
α . The Weyl tensor is then

Cabcd = 2Ψ0[Eα, Eβ ][Eα
′
, Eβ

′
]UabαβU

cd
α′β′

+ 2Ψ1[Eα, Eβ ][Eα
′
, Eβ

′
](UabαβW

cd
α′β′ + W ab

αβU
cd
α′β′)

+ 2Ψ2[Eα, Eβ ][Eα
′
, Eβ

′
](V abαβU

cd
α′β′ + UabαβV

cd
α′β′ + W ab

αβW
cd
α′β′)

+ 2Ψ3[Eα, Eβ ][Eα
′
, Eβ

′
](V abαβW

cd
α′β′ + W ab

αβV
cd
α′β′)

+ 2Ψ4[Eα, Eβ ][Eα
′
, Eβ

′
]V abαβV

cd
α′β′

, (3.1)

where the bi-vierbeins Uabαβ are evidently defined. The nature of the gauge field or gauge-like field associ-
ated with these Lie algebraic roots is discussed in the last section.
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The root vectors Eα obey the commutators

[Eα, Eβ ] = NαβHα+β ,

where Hα+β are the weights. With any Lie algebra there are elements that are analogous to a a† for the
harmonic oscillator, which are the standard roots Eα and a†a that correspond to the weights Hα. For
the gauge theoretic description of the Ĉ operators the result is linear in the weight. For gravitation the
operator is quadratic in the weights. The Weyl tensor for type D and II solutions are eigenvaled with
CabcdU

bU c = λUaUd. It is possible to see the Weyl tensor for these eigenvalued Petrov types obeys

CabcdU
bU c = λEαEδU

α
a U

δ
d .

Consequently the Weyl tensor for these eigenvalued Petrov types obeys

CabcdU
bU c = NαβNγ+δHα+βHγ+δU

α
a U

β
b U

γ
c U

δ
dU

bU c

= NαβNγ+δHα+βHγ+δE
βEγUαa U

δ
d = λEαEδU

α
a U

δ
d .

The commutators of the Lie algebraic roots concern the observables Ai and Bi on either side of the
apparatus. In the case of a Lie algebra a gauge transformation, or the introduction of a force, transforms
these operators relative to each other. This results then in a modification of the Tsirelson bound. Similarly,
for gravitation the parallel translation of these operators on either side of the apparatus does the same.
This has lead to a modification of the assocated line element expressed according to the heavenly sphere.

4 Holography, gauge-gravity correspondence and information

The Aspect apparatus is a guiding diagram for the following. We may think of the A and B states as
set by the optical switch where Alice and Bob measure an entangled pair. The general situation for an
entanglement is of course that the density matrix ρ(a, a′, b, b′) = ψ(a, b)ψ∗(a′b′) and what Alice or Bob
observe is given by the trace over the b or a states respectively. The state ψ(a, b) = φ(a)χ(b) as a
product means that the trace over Bob’s states

TrBρ(a, a′, b, b′) =
∑
b,b′

ψ(a, b)ψ∗(a′b′) = φ(a)φ∗(a′)
∑
bb′

χ(b)χ∗(b)

= φ(a)φ∗(a′)
∑
bb′

δbb′ = ρ(a, a′).

The composite or entangled system is one where neither the A or B states are known; the maximal
knowledge of the system is the entangled state as a whole [8]. This is knowledge is determined from the
preparation of a state as the source. If the separation between Alice and Bob is spacelike neither can
know directly anything about what the other observes. We may compare this case to the accelerated
frame. If Alice and Bob are on accelerated frames so that Bob is in region I and Alice is in region II.
Then the motion of the two observers with

tab = ρ sinh(ω), xb = ρ cosh(ω), xa = − ρ cosh(ω)

is such that on this frame Alice and Bob will never observe each other entangled pair[8].

The metric for the accelerated frame

ds2 = − ρ2dω2 + dω2 + dy2 + dz2

describes a path that is ρ distance form the Rindler wedge horizon. This distance is related to the
temperature according to ρ = 1/2πT . The observer in either region I or II observes close to the horizon
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virtual particle loops that cross the Rindler horizon into all regions. The two observers however observe
a virtual particle leaving the horizon from the asymptotic past infinity, or ω = 3π

4 and then approach
the horizon as t → ∞ or ω → π

4 in region I and similarly leave from ω = 5π
4 and approach ω → 7π

4
in region II. This metric is an approximation to the near horizon condition for the Schwarzschild metric.
The near horizon time-angle ω and time in the asymptotic region is ω = t/4GM and there is a Weyl
curvature for the vacuum spacetime. The commutators [Eα, Eβ ] = NαβEα+β correspond to an internal
gauge-like field that parametrizes the relative parallel translations of the field vectors of an entangled pair
in regions I and II.

It is evident the spacetime metric is a form of the Tsirelson bound. The Schwarzschild metric is
then an entanglement structure between quantum states in the two spacelike regions in the conformal
diagram. The Rindler wedge with the correspondence to the near horizon condition of a black hole leads
to a correspondence with the Penrose diagram for the Schwarzschild black hole. This connects then
with the emergence of spacetime from quantum entanglements[9]. The spacetime metric as a form of the
Tsirelson bound defines spacetime according to entanglements across event horizons.

The elements Uµ = EαU
µ
α define the Weyl curvature and the commutators for the entanglement of

states divided by the event horizon. The root vectors correspond to gauge-like action that parametrized
spacetime. The nature of this gauge field can be considered by looking at the group U(2, 2) ∼ O(4, 2),
which is the isometry group for the AdS5 spacetime. Consider the irreducible representation

U(2, 2) → (2, 2)⊗ (2, 2) = (3, 3)⊕ (3, 1)⊕ (1, 3)⊕ (1, 1)

The (3, 3) is spin 2 for gravitation. The (3, 1)⊕ (1, 3) is a spin 1 gauge field, and the last (1, 1) are a
scalar fields, such as the dilaton and axion.

This representation has the following correspondences

(3,3) → U(2, 2)

U(2)× U(2)
, (1,3) → U(2, 2)

U(1)× U(3)
, 1 → U(2, 2)

U(2, 2)
.

The first two in complexified coordinates define the spaces G2(V 2,2) and CP4 with complex dimensions
6 and 4 respectively. With CP3 ⊂ CP4 or CP4 = CP3 ∪ C3 the split (3,1) corresponds to CP3,1 as
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the projective space defined by the Hopf fibration of the boundary. The relevant dynamics is then the
action of CP3 on C3. These two spaces are mapped from the flag manifold F12 as

CP3 = F1 ← F12 → F2 = G2(V 2,2)

This defines twistor space[10]. The (3, 1)⊕ (1, 3) defines CP3 and CP∗3, for the second defined for the
double fibration on the dual flag manifold F∗12, which defines ambitwistor space. The remaining scalar
fields (1,1) define a dual set of (E, φ) and (E∗, φ∗), for E and E∗ holomorphic vector bundles. This is
then a form of Higgs bundles of Hitchens[11].

This decomposition can be seen according to the Clifford algebra CL(4) with dimension 24 = 16 that
by binomial distribution is 16 = 1 4 6 4 1, this assignments of dimensions above. For a more general
unified field, such as expected of E8 × E8 consider the Clifford CL(8) with the decomposition

28 = 162 = 1 8 28 56 70 56 28 8 1.

The 16 = 8 + 8 is the U(2, 2) ∼ O(4, 2). By extension Cl(16) = Cl(8) × Cl(8) contains E8 and
has graded structure. CL(16) is

216 = 28 × 28 = 1 16 120 560 . . . 560 120 16 1.

With e8 + so(16) ⊕ (64 ⊕ 64) the exceptional e8 is constructed from so(16) and two spinors 64. The
spinor structure of CL(16) has size (64 + 64) × (128 + 128) = 32768 which is half of the Clifford
algebra. This permits the embedding of two exceptional E8 or E8 × E8 in heterotic string theory.

The Tsirelson bound and the metric is generically a form of the Fisher distance defined by the multi-
plication of different elements[12]. In this manner the information content of qubits and their relationship
with spacetime may best be formulated according to Fisher information. Gauge fields and gravity then
transform the metric in such a way that information is conserved. Fisher information and its definition
according to the sort of product that defines the Ĉ operator is then conserved.

The equivalency or morphism between the Tsirelson bound and the metric is a map between magmas.
Magmas are universal algebras with a binary operation µ on a set S, µ : S × S → S, is a class of
algebras of groups, quasigroups (division algebra) and semi-groups and groupoids. These define a class
call magmas. The product operations in equations 1 and 2 define magmas, and the representation of
the spacetime with basis elements in equation 3 illustrate a mapping from one magma to another as
a morphism. A monoid is a category with one element, and the category of groups may similarly be
defined in monoids. This is then a demonstration on how spacetime and quantum mechanics, when
looked according to group properties, are categorically the same. This opens the door for the foundations
of physics to be a formulated as a categorical cohomology, such as Grothendiek theory.
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