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Abstract. In this paper, biharmonic curves are studied in Isotropic space I13 and in the equiform geome-
try of Isotropic space I13 . By using curvature and torsion of the curves, some characterizations are given.

Keywords: Biharmonic curve, isotropic space, equiform geometry, isotropic space.

1. Introduction
The theory of biharmonic maps is an old and rich subject, initially studied due to its implications in the
theory of elasticity and fluid mechanics. G.B. Airy and J.C. Maxwell were the first to study and express
plane elastic problems in terms of the biharmonic equation.
The Riemannian generalization of the elastic energy, called the bioenergy, is defined as:

E2 (c) =
1

2
κ2ds,

where κ is the geodesic curvature of the curve c. Critical points of E2, called biharmonic curves, are
described by the equation [12]:

53
cc = R (c,5cc) c.

Biharmonic maps have been extensively studied in the last decade and there are two main research
directions. On the one side, the differential geometric aspect has driven attention to the construction of
examples and classification results. The other side is the analytic aspect from the point of view of PDE:
biharmonic functions are solutions of a fourth order strongly elliptic semilinear PDE.
Chen and Ishikawa [2] classified biharmonic curves in semi-Euclidean space Env . They showed that every
biharmonic curve lies in a 3-dimensional totally geodesic subspace. Thus, it suffices to classify biharmonic
curves in semi-Euclidean 3-space. More recently, besides in semi-Euclidean space, many studies have been
made in other space: In [3], Degla and et al. proved that there was no non-geodesic biharmonic curve in a
four-dimensional Damek-Ricci space although such curves exist in three-dimensional Heisenberg groups.
Inoguchi gave a differential geometric interpretation for the classification of biharmonic curves in semi-
Euclidean 3-space, in [5]. In [6], Kocayiğit and et al. studied 1-type curves by using the mean curvature
vector field of the curve and they also studied biharmonic curves whose mean curvature vector field was
in the kernel of Laplacian. In [7], Kocayiğit et al. gave definitions and characterizations of harmonic
1-type and weak biharmonic curves by using the mean curvature vector field of a Frenet curve in the
Lorentzian 3-space L3.In [8], Körpınar and et al. gave some characterizations by using the curvature and
torsion of curves in the H2 × R. In [10], they found curvature characterizations of biharmonic Legendre
curves in S-space forms. In [11], Perktaş and et al. studied the non-geodesic non-null biharmonic in
3-dimensional hyperbolic Heisenberg group with a semi-Riemannian metric of index 2. In [12], Voicu
studied biharmonic curves in spaces with Finslerian geometry. He gave specific properties and existence
of non-geodesic biharmonic curves for some classes of Finsler spaces.
In this paper, 1-type curves and biharmonic curves are given by using the curvature vector field in Isotropic
Space I13 and in the equiform geometry of the Isotropic Space I13 . In Isotropic Space I13 , we showed that
biharmonic curve holds if and only if a Frenet curve is a geodesic. Additionally, in the equiform geometry
of Isotropic Space I13 , we showed that biharmonic curve holds if and only if a Frenet curve is a geodesic
and a null cubic.
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2. Basic notions and properties
The isotropic geometry is one of the real Cayley-Klein geometries. The absolute of the simple isotropic
geometry is an ordered triple {w, f1, f2} where w is the ideal (absolute) plane and f1, f2 couple of
complex conjugate lines in w.
Let c : I → I13 , I ⊂ IR be a curve given by

c(s) = (x(s), y(s), z(s)),

where x(s), y(s), z(s) ∈ C3 (the set of three times continuously differentiable functions) and s run through
a real interval [9].
Let c be an admissible curve in I13 , parameterized by arc length, given in coordinate form

c(s) = (s, y(s), z(s)). (2.1)

Then the curvature κ(s) and the torsion τ(s) are defined by

κ(s) = x
′
y

′′
− y

′
x

′′
(2.2)

τ(s) =
det(c

′
(s), c

′′

(s), c
′′′

(s))

κ2(s)

and associated moving trihedron is given by

t(s) = c
′
(s) (2.3)

n(s) =
1

κ(s)
c
′′

(s)

b(s) = (0, 0, 1)

The vectors tc, nc, bc are called the vectors of the tangent, principal normal and binormal line of c,
respectively. For their derivatives the following Frenet formulas hold [9]

t
′
(s) = κ(s)n(s)

n
′
(s) = −κ(s)t(s) + τ(s)b(s) (2.4)

b
′
(s) = 0.

Scalar product in the Isotropic space I13 is defined as follows, if x1, x2 6= 0 or y1, y2 6= 0, then

< X,Y >= x1y1 + x2y2, (2.5)

and if x3 = 0 or y3 = 0, then

< X,Y >= x3y3, (2.6)

where X = (x1, x2, x3) and Y = (y1, y2, y3) .

The equiform differential geometry of the Isotropic space I13 has been studied in [4]. Let us recall some
basic definitions from this work.
The equiform curvature and the equiform torsion of an admissible curve is defined by

K =
.
ρ, T = ρτ =

τ

κ
, (2.7)
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where ρ is the radius of curvature of the curve c.
The associated trihedron is given by

T = ρ.t, N = ρ.n, B = ρ.b. (2.8)

The formulas analogous to the Frenet’s in the equiform geometry of the simple isotropic space have the
following form

dT

dσ
= K.T +N,

dN

dσ
= −T +K.N + T .B, (2.9)

dB

dσ
= K.B,

where σ is an equiform invariant parameter defined by σ = ds
ρ .

3. 1-Type Curves and Biharmonic Curves

Let c : I → I13 , I ⊂ IR be an arclengthed curve in Isotropic space I13 . Namely the velocity vector field c′

satisfies 〈c′, c′〉 = 1. A unit speed curve c is said to be a geodesic if 5cc = 0, where 5 is the Levi-Civita
connection. In particular an arclengthed curve c is said to be a geodesic if κ = 0, where κ is the curvature
of c. Note that if κ = 0, then automatically τ = 0, where τ is the torsion of c.
We first assume that 〈c′′, c′′〉 6= 0. A unit speed curve c is said to be a Frenet curve if 〈c′′, c′′〉 6= 0.
Let us denote the Laplace-Beltrami operator by 4 of c and the mean curvature vector field along c by
H, [1].
The Frenet-Serret formulae of c in Isotropic space I13 imply that the mean curvature vector field H is
given by

H = 5c′c′ = 5c′t = κn, (3.1)

where κ is the curvature of c.
The Laplacian operator of c is defined by

4 = −52
c′ c
′ = −5c′ 5c′c′. (3.2)

Definition 3.1. Let M ⊂ En+d be a compact submanifold and x : M → En+d be an isometric immersion.
In the case of

x = x0 +k
i=1 xi

then M is called finite type where x0 is the constant vector and 4xi = λixi, in the other case M is called
infinite type and x1, x2, ..., xk are non-constant functions [2,6].
Theorem 3.1. The submanifold M ⊂ En+d is k-type if and only if the mean curvature vector field H
of M satisfy

4kH + c1 4k−1 H + ....+ ck−1 4H + ckH = 0,

where

c1 = −qt=pλt

c2 = −qt=pλtλs, ..., cq−p+1λp...λq (k = q − p+ 1) ,

where 4xi = λixi (1 ≤ i ≤ k), [2,6].
According to the above theorem, the following definition can be given.
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Definition 3.2. A unit speed curve c : I → I13 , I ⊂ IR in Isotropic space I13 is said to be 1-type if

4H = λH. (3.3)

Definition 3.3. A unit speed curve c : I → I13 , I ⊂ IR in Isotropic space I13 is said to be biharmonic if

4H = 0. (3.4)

Theorem 3.2. If c is biharmonic curve if and only if 4 (4c) = 0, [6].
Lemma 3.1. The mean curvature vector field H is harmonic (4H = 0) if and only if [6]

5c′ 5c′ 5c′c′ = 0.

Theorem 3.3. Let c be an admissible Frenet curve parameterized by the arc of length in Isotropic Space
I13 . Then, the curve c is 1-type if and only if

κκ′ = 0, (3.5)

κ′′ − κ3 = λκ,

2κ′τ + κτ ′ = 0.

Proof. From (2.4), (3.1) and (3.2), we have

4H = (−3κκ′) t+
(
κ′′ − κ3

)
n+ (2κ′τ + κτ ′) b. (3.6)

By (3.1) and (3.3), we get

(3κκ′) t−
(
κ′′ − κ3

)
n− (2κ′τ + κτ ′) b = λκn. (3.7)

From (3.7), we obtain (3.5). Conversely, the equations of (3.5) satisfy the equation (3.3).
Theorem 3.4. Let c be an admissible Frenet curve parameterized by the arc of length in Isotropic Space
I13 . Then the curve c is biharmonic if and only if c is a geodesic.
Proof. Let I be an open interval and c : I → I13 be an admissible Frenet curve parameterized by the arc
of length. Let {t, n, b} be the Frenet frame field of c. Considering (3.1),

5c′H = −κ2t+ κ′n+ κτb.

Let us compute the Laplacian of H:

−4H = 5c′ 5c′ H
= (−3κκ′) t+

(
κ′′ − κ3

)
n+ (2κ′τ + κτ ′) b+

Hence along the curve c, 4H = 0 holds if and only if κ = 0. So c is a geodesic.
Conversely, every geodesic curve satisfies 4H = 0.

By a similar calculation, we obtain the following theorems in the equiform geometry of Isotropic Space
I13 .
Theorem 3.5. Let c be an admissible Frenet curve parameterized by the arc of length in the equiform
geometry of Isotropic Space I13 . Then the curve c is 1-type if and only if

K′′ + 3KK′ +K3 − 3K = λK
3K′ + 3K2 − 1 = λ

3KT + T ′ = 0.

Theorem 3.6. Let c be an admissible Frenet curve parameterized by the arc of length in the equiform
geometry of Isotropic Space I13 .Then the curve c is biharmonic if and only if K = 0 and T = 0.
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