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Abstract 
We show that the usual formulation of the tau method is well adapted to the problems proposed 

by Issa-Adeniyi, hence it is not necessary to introduce a complicate reformulation of this 

important Lanczos technique to construct polynomial solutions of ordinary differential equations. 
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1. Introduction 
 

Issa-Adeniyi [1] introduce a reformulation of the tau method [2] to obtain numerical solutions of 

certain class of problems in ordinary differential equations, for example, to solve: 

 

                                  𝑦′ − 𝑥2 𝑦 = 0,               𝑦(0) = 1,                                                      (1) 

 

and with their procedure they construct the following polynomial solution of 5
th

 order: 

 

  𝑦(𝑥) = 1 +
1

26 442 910 625
(42 887 122 𝑥 − 1 012 427 712 𝑥2 +  13 794 322 304 𝑥3 −  

 

                −9 264 926 976 𝑥4 +  6 901 011 968 𝑥5) .                                             (2) 

 

Here we show that with the usual version of the tau method is possible to study (1) and to give an 

alternative polynomial solution of fifth order simpler than (2). 

 
 

2. The tau method 
 

The Lanczos algorithm can be successfully applied to linear differential equations of arbitrary 

order, with the only condition that their coefficients have to be polynomials, with certain 

boundary conditions, in [-1,1] (strictly speaking this is not a restriction, since a change of scale 

can always be made) due to the fact that the Chebyshev polynomials 𝑇𝑗(𝑥) [3, 4] vary uniformly 
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in the whole interval; if we make the analysis in [0,1] then the tau method remains unaltered, 

because it is only necessary to employ the modified Chebyshev polynomials  𝑇𝑘
∗(𝑥) [5, 6] instead 

of the 𝑇𝑘. 

 

Let us consider the problem: 

                                                      𝐷𝑦(𝑥) = 0,                                                                  (3) 

 

such that D is a linear differential operator of order α, with the initial conditions: 

 

                               𝑦(𝑘)(0),            𝑘 = 0, 1, … , 𝛼 − 1.                                              (4) 

 

In the next step the Lanczos-Ortiz canonical polynomials [2, 5, 7-9] 𝑄𝑚 are constructed, with the 

important clarification that m does not necessarily refer to the polynomial order: 

 

                             𝐷𝑄𝑚(𝑥) = 𝑥𝑚 + 𝑅𝑚(𝑥),             𝑚 = 0, 1, 2, …                                  (5) 

 

where the 𝑅𝑚 are known as residual polynomials. It is important to note that there can exist 

certain values  𝑚1, 𝑚2, … , 𝑚𝑠  for which the prescription (5) does not work, namely, for which it 

is not possible to construct the pair 𝑄𝑚𝑗
 and 𝑅𝑚𝑗

 verifying (5). In these cases, the 𝑄𝑚𝑗
 are known 

as indefinite polynomials, and it is convenient to introduce an ensemble S that contains such 

pathological values: 

                                             𝑆 = {𝑚1, 𝑚2, … , 𝑚𝑠},                                                      (6) 

 

on the other hand, all the residual polynomials are linear combinations of the different powers 

𝑥𝑚𝑗 , 𝑗 = 1, … , 𝑠: 

 

                𝑅𝑘(𝑥) = 𝐶𝑘
𝑚1𝑥𝑚1 + 𝐶𝑘

𝑚2𝑥𝑚2 +∙∙∙ +𝐶𝑘
𝑚𝑠𝑥𝑚𝑠 ,       𝑘 = 0,1, … ,    𝑘 ∉ 𝑆,                (7) 

 

note that in (7) we have  𝑘 ≠ 𝑚𝑗  because the  𝑅𝑚𝑗
 are indefinite. 

 

Here it is accepted that the original problem (3) does not have exact polynomials solutions, 

which excludes the existence of multiple canonical polynomials. For instance, if two different 

polynomials 𝑄𝑎 and 𝑄𝑏 provide the same power of x, 𝐷𝑄𝑎 = 𝐷𝑄𝑏 = 𝑥𝑝 , then 𝐷(𝑄𝑎 − 𝑄𝑏) = 0 

and 𝑄𝑎 − 𝑄𝑏 will be a polynomial solution of (3). It is possible to give the corresponding 

extension of the method in the case in which (3) allows exact polynomial solutions. 

Subsequently, Lanczos proposes to replace the zero in (3) for a small perturbation: 

 

                                              𝐷�̃�(𝑥) = 𝐻𝑛(𝑥),                                                         (8) 
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where 𝐻𝑛 is a n-degree polynomial, and �̃�(𝑥) is an exact polynomial solution subjected to the 

same boundary conditions (4): 

 

                          �̃�(𝑘)(0) = 𝑦(𝑘)(0),        𝑘 = 0, … , 𝛼 − 1,                                        (9) 

 

which in turn, is a good polynomial approximation for the problem (3), with an error uniformly 

distributed in [-1,1], we can achieve this last property if 𝐻𝑛 is written in terms of Chebyshev´s 

𝑇𝑘: 

                𝐻𝑛(𝑥) = (𝜏0 + 𝜏1𝑥 +∙∙∙ +𝜏𝑟𝑥𝑟) 𝑇𝑛−𝑟(𝑥),          𝑟 = 𝛼 + 𝑠 − 1,                        (10) 

 

notice the presence of the (r+1) parameters 𝜏𝑗 that the algorithm itself allows to determine, and 

whose magnitudes are small because 𝐻𝑛 should not deviate much from the zero of the right hand 

side of (3). Therefore, the quantity of parameters 𝜏𝑗 depends on the order α of the differential 

operator D, and also of the cardinality of S, i.e. of the number of the indefinite canonical 

polynomials. On the other hand, the Chebyshev polynomial that appears in (10) can be written in 

the following form: 

                           𝑇𝑛−𝑟(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 +∙∙∙ +𝑐𝑛−𝑟𝑥𝑛−𝑟 ,                              (11) 

 

its corresponding coefficients 𝑐𝑘 are data that take part in different equations of the tau method. 

   Then, we can express the exact polynomial solution of (8) as: 

 

                                �̃�(𝑥) = ∑  𝑐𝑚
𝑛−𝑟
𝑚=0  ∑  𝜏𝑖 𝑄𝑚+𝑖(𝑥),𝑟

𝑖=0                                      (12) 

                                                                                (m+i) ∉ S 

 

note that (m + i) does not belong to (6)  ∴  (𝑚 + 𝑖) ≠ 𝑚𝑗 , 𝑗 = 1, … , 𝑠. If we impose in (12) the 

boundary conditions (9), we obtain the constraints: 

 

       ∑  𝑐𝑚
𝑛−𝑟
𝑚=0  ∑  𝜏𝑖 𝑄𝑚+𝑖

(𝑘)𝑟
𝑖=0 (0) = 𝑦(𝑘)(0),        𝑘 = 0, 1, … , 𝛼 − 1,                 (13) 

                                           (m+i) ≠ 𝑚𝑗 

 

and the substitution of (12) into (8) provides the relations: 

 

                 ∑  𝜏𝑖
𝑟
𝑖=0  [ ∑  𝑐𝑘 𝑥𝑘+𝑖𝑛−𝑟

𝑘=0 − ∑  𝑐𝑚 𝑅𝑚+𝑖
𝑛−𝑟
𝑚=0 (𝑥)] = 0.                       (14) 

(k+i) 𝜖 S             (m+i) ∉ S 

 

In (13) there are α conditions, meanwhile (14) implies s constraints (because we should equal the 

coefficients of the different powers 𝑥𝑞 to zero, whose q-values are all contained in S), making a 

total of α + s = r + 1 algebraic equations to compute the (r + 1) parameters 𝜏𝑗, being therefore 
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(12) completely determined. It should be emphasized that n is a datum, because it can be decided 

(depending on the problem under analysis) the order of the perturbation, and therefore the tau 

process provides an exact solution for (8) and (9). Note that the order of �̃�(𝑥) is not necessarily 

equal to n, in fact, this depends on the structure of the differential operator D. 

 

If this process of Lanczos is applied to (1), that is, to (8) with n = 7, we obtain the quantities: 

 

   𝛼 = 1,     𝑚1 = 0,  𝑚2 = 1,   𝑠 = 𝑟 = 2,    𝐻7 = (𝜏0 + 𝜏1 𝑥 + 𝜏2 𝑥2) 𝑇5,   𝑄0 and 𝑄1 are indefinite, 

 

  𝑇5(𝑥) = 5𝑥 − 20𝑥3 + 16𝑥5,   𝑐0 = 𝑐2 = 𝑐4 = 0,   𝑐1 = 5,   𝑐3 = −20,   𝑐5 = 16,   𝑄2 = −1, 

 

  𝑄3 = −𝑥,  𝑄4 = −𝑥2, 𝑄5 = −𝑥3 − 3,   𝑄6 = −𝑥4 − 4𝑥,   𝑄7 = −𝑥5 − 5𝑥2,   𝑄8 = −𝑥6 − 6𝑥3 − 18,      

 

   𝑄9 = −𝑥7 − 7𝑥4 − 28𝑥, 𝑅2 = 𝑅5 = 𝑅8 = 0,   28𝑅3 = 7𝑅6 = 𝑅9 = −28,   5𝑅4 = 𝑅7 = −10𝑥,     (15) 

 

                                𝜏0 = −
696

32 563
 ,                   𝜏1 = −

215

32 563
 ,                   𝜏2 = −

32

32 563
 , 

 

with the exact solution of (8): 

 

        �̃� = 1 +
1

32 563
(−1 740 𝑥2 + 10 496 𝑥3 + 3 440 𝑥4 + 512 𝑥5),             (16) 

 

which is an approximate solution of (1), and simpler than (2). 

 

A similar process can be applied to the several problems proposed by Issa-Adeniyi [1], without 

to modify the usual tau method. 
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