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Abstract

Super-conformal invariance inspires a strategy for proving the Riemann hypothesis. The vanishing of the
Riemann Zeta reduces to an orthogonality condition for the eigenfunctions of a non-Hermitian operator D+

having the zeros of Riemann Zeta as its eigenvalues. The construction of D+ is inspired by the conviction that
Riemann Zeta is associated with a physical system allowing super-conformal transformations as its symmetries
and second quantization in terms of the representations of the super-conformal algebra. The eigenfunctions of
D+ are analogous to coherent states of a harmonic oscillator and in general they are not orthogonal to each
other. The states orthogonal to a vacuum state (having a negative norm squared) correspond to the zeros of
Riemann Zeta. The physical states having a positive norm squared correspond to the zeros of Riemann Zeta at
the critical line. Riemann hypothesis follows both from the hermiticity and positive definiteness of the metric
in the space of states corresponding to the zeros of ζ. Also conformal symmetry in appropriate sense implies
Riemann hypothesis and after one year from the discovery of the basic idea it became clear that one can actually
construct a twenty line long analytic argument for the correctness of the Riemann hypothesis using a standard
argument from Lie group

1 Introduction
Hilbert and Polya [2] conjectured a long time ago that the non-trivial zeroes of Riemann Zeta function [1, 3, 4]
could have spectral interpretation in terms of the eigenvalues of a suitable self-adjoint differential operator H such
that the eigenvalues of this operator correspond to the imaginary parts of the nontrivial zeros z = x+ iy of ζ. One
can however consider a variant of this hypothesis stating that the eigenvalue spectrum of a non-hermitian operator
D+ contains the non-trivial zeros of ζ. The eigen states in question are eigen states of an annihilation operator type
operator D+ and analogous to the so called coherent states encountered in quantum physics [6]. In particular, the
eigenfunctions are in general non-orthogonal and this is a quintessential element of the proposed strategy of proof,
whose earlier version is discussed in [9]. The version to be discussed in the following has appeared as eprint [8] .

In the following an explicit operator having as its eigenvalues the non-trivial zeros of ζ is constructed.

1. The construction relies crucially on the interpretation of the vanishing of ζ as an orthogonality condition in a
hermitian metric which is is a priori more general than Hilbert space inner product.

2. Second basic element is the scaling invariance motivated by the belief that ζ is associated with a physical
system which has super-conformal transformations [7] as its symmetries.

The core elements of the construction are following.

1. All complex numbers are candidates for the eigenvalues of D+ (formal hermitian conjugate of D) and gen-
uine eigenvalues are selected by the requirement that the condition D† = D+ holds true in the set of the
genuine eigenfunctions. This condition is equivalent with the hermiticity of the metric defined by a function
proportional to ζ.

2. The eigenvalues turn out to consist of z = 0 and the non-trivial zeros of ζ and only the eigenfunctions
corresponding to the zeros with Re[s] = 1/2 define a subspace possessing a hermitian metric. The vanishing of
ζ tells that the ’physical’ positive norm eigenfunctions (in general not orthogonal to each other), are orthogonal
to the ’un-physical’ negative norm eigenfunction associated with the eigenvalue z = 0.

The proof of the Riemann hypothesis by reductio ad absurdum results if one assumes that the space V spanned by
the states corresponding to the zeros of ζ inside the critical strip has a hermitian induced metric. Riemann hypothesis
follows also from the requirement that the induced metric in the spaces subspaces Vs of V spanned by the states
Ψs and Ψ1−s does not possess negative eigenvalues: this condition is equivalent with the positive definiteness of the
metric in V . Conformal invariance in the sense of gauge invariance allows only the states belonging to V . Riemann
hypothesis follows also from a restricted form of a dynamical conformal invariance in V . This allows the reduction
of the proof to a standard analytic argument used in Lie-group theory.
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2 Modified form of the Hilbert-Polya conjecture
One can modify the Hilbert-Polya conjecture by assuming scaling invariance and giving up the hermiticity of the
Hilbert-Polya operator. This means introduction of the non-hermitian operators D+ and D which are hermitian
conjugates of each other such that D+ has the nontrivial zeros of ζ as its complex eigenvalues

D+Ψ = zΨ. (2.1)

The counterparts of the so called coherent states [6] are in question and the eigenfunctions of D+ are not expected
to be orthogonal in general. The following construction is based on the idea that D+ also allows the eigenvalue
z = 0 and that the vanishing of ζ at z expresses the orthogonality of the states with eigenvalue z = x+ iy 6= 0 and
the state with eigenvalue z = 0 which turns out to have a negative norm.

The trial

D = L0 + V, D+ = −L0 + V

L0 = t d
dt
, V = dlog(F )

d(log(t))
= tdF

dt
1
F

(2.2)

is motivated by the requirement of invariance with respect to scalings t→ λt and F → λF . The range of variation
for the variable t consists of non-negative real numbers t ≥ 0. The scaling invariance implying conformal invariance
(Virasoro generator L0 represents scaling which plays a fundamental role in the super-conformal theories [7]) is
motivated by the belief that ζ codes for the physics of a quantum critical system having, not only super-symmetries
[5], but also super-conformal transformations as its basic symmetries.

3 Formal solution of the eigenvalue equation for operator D+

One can formally solve the eigenvalue equation

D+Ψz =

[
−t d
dt

+ t
dF

dt

1

F

]
Ψz = zΨz. (3.1)

for D+ by factoring the eigenfunction to a product:

Ψz = fzF. (3.2)

The substitution into the eigenvalue equation gives

L0fz = t
d

dt
fz = −zfz (3.3)

allowing as its solution the functions

fz(t) = tz. (3.4)

These functions are nothing but eigenfunctions of the scaling operator L0 of the super-conformal algebra analogous
to the eigen states of a translation operator. A priori all complex numbers z are candidates for the eigenvalues of
D+ and one must select the genuine eigenvalues by applying the requirement D† = D+ in the space spanned by the
genuine eigenfunctions.

It must be emphasized that Ψz is not an eigenfunction of D. Indeed, one has

DΨz = −D+Ψz + 2VΨz = zΨz + 2VΨz. (3.5)

This is in accordance with the analogy with the coherent states which are eigen states of annihilation operator but
not those of creation operator.

4 D+ = D† condition and hermitian form
The requirement that D+ is indeed the hermitian conjugate of D implies that the hermitian form satisfies

〈f |D+g〉 = 〈Df |g〉. (4.1)

This condition implies

〈Ψz1|D+Ψz2〉 = 〈DΨz1|Ψz2〉. (4.2)
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The first (not quite correct) guess is that the hermitian form is defined as an integral of the product Ψz1Ψz2

of the eigenfunctions of the operator D over the non-negative real axis using a suitable integration measure. The
hermitian form can be defined by continuing the integrand from the non-negative real axis to the entire complex
t-plane and noticing that it has a cut along the non-negative real axis. This suggests the definition of the hermitian
form, not as a mere integral over the non-negative real axis, but as a contour integral along curve C defined so that
it encloses the non-negative real axis, that is C

1. traverses the non-negative real axis along the line Im[t] = 0− from t =∞+ i0− to t = 0+ + i0−,

2. encircles the origin around a small circle from t = 0+ + i0− to t = 0+ + i0+,

3. traverses the non-negative real axis along the line Im[t] = 0+ from t = 0+ + i0+ to t =∞+ i0+ .
Here 0± signifies taking the limit x = ±ε, ε > 0, ε→ 0.

C is the correct choice if the integrand defining the inner product approaches zero sufficiently fast at the limit
Re[t] → ∞. Otherwise one must assume that the integration contour continues along the circle SR of radius
R → ∞ back to t = ∞ + i0− to form a closed contour. It however turns out that this is not necessary. One can
deform the integration contour rather freely: the only constraint is that the deformed integration contour does not
cross over any cut or pole associated with the analytic continuation of the integrand from the non-negative real axis
to the entire complex plane.

Scaling invariance dictates the form of the integration measure appearing in the hermitian form uniquely to
be dt/t. The hermitian form thus obtained also makes possible to satisfy the crucial D+ = D† condition. The
hermitian form is thus defined as

〈Ψz1 |Ψz2〉 = −K(z12)

2πi

∫
C

Ψz1Ψz2

dt

t
. (4.3)

K(z12) is real from the hermiticity requirement and the behavior as a function of z12 = z1 + z2 by the requirement
that the resulting Hermitian form defines a positive definite inner product. The value of K(1) can can be fixed by
requiring that the states corresponding to the zeros of ζ at the critical line have unit norm: with this choice the
vacuum state corresponding to z = 0 has negative norm. Physical intuition suggests that K(z12) is responsible for
the Gaussian overlaps of the coherent states and this suggests the behavior

K(z12) = exp(−α|z12|2), (4.4)

for which overlaps between states at critical line are
proportional to exp(−α(y1 − y2)2) so that for α > 0 Schwartz inequalities are certainly satisfied for large values

of |y12|. Small values of y12 are dangerous in this respect but since the matrix elements of the metric decrease for
small values of y12 even for K(z12) = 1, it is possible to satisfy Schwartz inequalities for sufficiently large value of
α. It must be emphasized that the detailed behavior

of K is not crucial for the arguments relating to Riemann
hypothesis.
The possibility to deform the shape of C in wide limits realizes conformal invariance stating that the change of the

shape of the integration contour induced by a conformal transformation, which is nonsingular inside the integration
contour, leaves the value of the contour integral of an analytic function unchanged. This scaling invariant hermitian
form is indeed a correct guess. By applying partial integration one can write

〈Ψz1|D+Ψz2〉 = 〈DΨz1|Ψz2〉 −
K(z12)

2πi

∫
C

dt
d

dt

[
Ψz1(t)Ψz2(t)

]
. (4.5)

The integral of a total differential comes from the operator L0 = td/dt and must vanish. For a non-closed inte-
gration contour C the boundary terms from the partial integration could spoil the D+ = D† condition unless the
eigenfunctions vanish at the end points of the integration contour (t =∞+ i0±).

The explicit expression of the hermitian form is given by

〈Ψz1|Ψz2〉 = −K(z12)

2πi

∫
C

dt

t
F 2(t)tz12 ,

z12 = z1 + z2. (4.6)

It must be emphasized that it is Ψz1Ψz2 rather than eigenfunctions which is continued from the non-negative real
axis to the complex t-plane: therefore one indeed obtains an analytic function as a result.

An essential role in the argument claimed to prove the Riemann hypothesis is played by the crossing symmetry

〈Ψz1|Ψz2〉 = 〈Ψ0|Ψz1+z2〉 (4.7)

of the hermitian form. This symmetry is analogous to the crossing symmetry of particle physics stating that the
S-matrix is symmetric with respect to the replacement of the particles in the initial state with their antiparticles in
the final state or vice versa [6].

The hermiticity of the hermitian form implies

〈Ψz1|Ψz2〉 = 〈Ψz2|Ψz1〉. (4.8)

This condition, which is not trivially satisfied, in fact determines the eigenvalue spectrum.
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5 How to choose the function F?
The remaining task is to choose the function F in such a manner that the orthogonality conditions for the solutions
Ψ0 and Ψz reduce to the condition that ζ or some function proportional to ζ vanishes at the point −z. The definition
of ζ based on analytical continuation performed by Riemann suggests how to proceed. Recall that the expression of
ζ converging in the region Re[s] > 1 following from the basic definition of ζ and elementary properties of Γ function
[11] reads as

Γ(s)ζ(s) =

∫ ∞
0

dt

t

exp(−t)
[1− exp(−t)]

ts. (5.1)

One can analytically continue this expression to a function defined in the entire complex plane by noticing that the
integrand is discontinuous along the cut extending from t = 0 to t = ∞. Following Riemann it is however more
convenient to consider the discontinuity for a function obtained by multiplying the integrand with the factor

(−1)s ≡ exp(−iπs).

The discontinuity Disc(f) ≡ f(t)− f(texp(i2π)) of the resulting function is given by

Disc

[
exp(−t)

[1− exp(−t)]
(−t)s−1

]
= −2isin(πs)

exp(−t)
[1− exp(−t)]

ts−1. (5.2)

The discontinuity vanishes at the limit t → 0 for Re[s] > 1. Hence one can define ζ by modifying the integration
contour from the non-negative real axis to an integration contour C enclosing non-negative real axis defined in the
previous section.

This amounts to writing the analytical continuation of ζ(s) in the form

− 2iΓ(s)ζ(s)sin(πs) =

∫
C

dt

t

exp(−t)
[1− exp(−t)]

(−t)s−1. (5.3)

This expression equals to ζ(s) for Re[s] > 1 and defines ζ(s) in the entire complex plane since the integral around
the origin eliminates the singularity.

The crucial observation is that the integrand on the righthand side of Eq. 5.3 has precisely the same general
form as that appearing in the hermitian form defined in Eq. 4.6 defined using the same integration contour C. The
integration measure is dt/t, the factor ts is of the same form as the factor tz1+z2 appearing in the hermitian form,
and the function F 2(t) is given by

F 2(t) =
exp(−t)

1− exp(−t)
.

Therefore one can make the identification

F (t) =

[
exp(−t)

1− exp(−t)

]1/2
. (5.4)

Note that the argument of the square root is non-negative on the non-negative real axis and that F (t) decays
exponentially on the non-negative real axis and has 1/

√
t type singularity at origin. From this it follows that

the eigenfunctions Ψz(t) approach zero exponentially at the limit Re[t] → ∞ so that one can use the non-closed
integration contour C.

With this assumption, the hermitian form reduces to the expression

〈Ψz1|Ψz2〉 = −K(z12)

2πi

∫
C

dt

t

exp(−t)
[1− exp(−t]

(−t)z12

=
K(z12)

π
sin(πz12)Γ(z12)ζ(z12). (5.5)

Recall that the definition z12 = z1 + z2 is adopted. Thus the orthogonality of the eigenfunctions is equivalent to the
vanishing of ζ(z12) if K(z12) is positive definite.

6 Study of the hermiticity condition
In order to derive information about the spectrum one must explicitly study what the statement that D† is hermitian
conjugate of D means. The defining equation is just the generalization of the equation

A†mn = Anm. (6.1)

defining the notion of hermiticity for matrices. Now indices m and n correspond to the eigenfunctions Ψzi , and one
obtains
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〈Ψz1|D+Ψz2〉 = z2〈Ψz1|Ψz2〉 = 〈Ψz2|DΨz1〉 = 〈D+Ψz2|Ψz1〉 = z2〈Ψz2|Ψz1〉.
Thus one has

G(z12) = G(z21) = G(z12)

G(z12) ≡ 〈Ψz1|Ψz2〉. (6.2)

The condition states that the hermitian form defined by the contour integral is indeed hermitian. This is not trivially
true. Hermiticity condition obviously determines the spectrum of the eigenvalues of D+.

To see the implications of the hermiticity condition, one must study the behavior of the function G(z12) under
complex conjugation of both the argument and the value of the function itself. To achieve this one must write the
integral

G(z12) = −K(z12)

2πi

∫
C

dt

t

exp(−t)
[1− exp(−t)]

(−t)z12

in a form from which one can easily deduce the behavior of this function under complex conjugation. To achieve
this, one must perform the change t→ u = log(exp(−iπ)t) of the integration variable giving

G(z12) = −K(z12)

2πi

∫
D

du
exp(−exp(u))

[1− exp(−(exp(u)))]
exp(z12u).

(6.3)

Here D denotes the image of the integration contour C under t→ u = log(−t). D is a fork-like contour which

1. traverses the line Im[u] = iπ from u =∞+ iπ to u = −∞+ iπ ,

2. continues from −∞+ iπ to −∞− iπ along the imaginary u-axis (it is easy to see that the contribution from
this part of the contour vanishes),

3. traverses the real u-axis from u = −∞− iπ to u =∞− iπ.

The integrand differs on the line Im[u] = ±iπ from that on the line Im[u] = 0 by the factor exp(∓iπz12) so that
one can write G(z12) as integral over real u-axis

G(z12) = −K(z12)

π
sin(πz12)

∫ ∞
−∞

du
exp(−exp(u))

[1− exp(−(exp(u)))]
exp(z12u).

(6.4)

From this form the effect of the transformation G(z) → G(z) can be deduced. Since the integral is along the real
u-axis, complex conjugation amounts only to the replacement z21 → z12, and one has

G(z12) = −K(z21)

π
× sin(πz21)

∫ ∞
−∞

du
exp(−exp(u))

[1− exp(−(exp(u)))]
exp(z12u)

=
K(z21)

K(z12)
× sin(πz21)

sin(πz12)
G(z12). (6.5)

Thus the hermiticity condition reduces to the condition

G(z12) =
K(z21)

K(z12)
× sin(πz21)

sin(πz12)
×G(z12). (6.6)

The reality of K(z12) guarantees that the diagonal matrix elements of the metric are real.
For non-diagonal matrix elements there are two manners to satisfy the hermiticity condition.

1. The condition

G(z12) = 0 (6.7)

is the only manner to satisfy the hermiticity condition for x1 +x2 6= n, y1− y2 6= 0. This implies the vanishing
of ζ:

ζ(z12) = 0 for 0 < x1 + x2 < 1. (6.8)

In particular, this condition must be true for z1 = 0 and z2 = 1/2 + iy. Hence the physical states with the
eigenvalue z = 1/2 + iy must correspond to the zeros of ζ.
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2. For the non-diagonal matrix elements of the metric the condition

exp(iπ(x1 + x2)) = ±1 (6.9)

guarantees the reality of sin(πz12) factors. This requires

x1 + x2 = n. (6.10)

The highly non-trivial implication is that the the vacuum state Ψ0 and the zeros of ζ at the critical line span
a space having a hermitian. Note that for x1 = x2 = n/2, n 6= 1, the diagonal matrix elements of the metric
vanish.

3. The metric is positive definite only if the function K(z12) decays sufficiently fast: this is due to the exponential
increase of the moduli of the matrix elements G(1/2 + iy1, 1/2 + iy2) for K(z12) = 1 and for large values of
|y1 − y2| (basically due to the sinh [π (y1 − y2)]-factor in the metric) implying the failure of the Schwartz
inequality for |y1 − y2| → ∞. Unitarity, guaranteing probability interpretation in quantum theory, thus
requires that the parameter α characterizing the Gaussian decay of K(z12) = exp(−α|z12|2) is above some
minimum value.

7 Various assumptions implying Riemann hypothesis
As found, the general strategy for proving the Riemann hypothesis, originally inspired by super-conformal invariance,
leads to the construction of a set of eigen states for an operator D+, which is effectively an annihilation operator
acting in the space of complex-valued functions defined on the real half-line. Physically the states are analogous
to coherent states and are not orthogonal to each other. The quantization of the eigenvalues for the operator D+

follows from the requirement that the metric, which is defined by the integral defining the analytical continuation
of ζ, and thus proportional to ζ (〈s1, s2〉 ∝ ζ(s1 + s2)), is hermitian in the space of the physical states.

The nontrivial zeros of ζ are known to belong to the critical strip defined by 0 < Re[s] < 1. Indeed, the theorem
of Hadamard and de la Vallee Poussin [12] states the non-vanishing of ζ on the line Re[s] = 1. If s is a zero of ζ
inside the critical strip, then also 1− s as well as s and 1− s are zeros. If Hilbert space inner product property is
not required so that the eigenvalues of the metric tensor can be also negative in this subspace. There could be also
un-physical zeros of ζ outside the critical line Re[s] = 1/2 but inside the critical strip 0 < Re[s] < 1. The problem is
to find whether the zeros outside the critical line are excluded, not only by the hermiticity but also by the positive
definiteness of the metric necessary for the physical interpretation, and perhaps also by conformal invariance posed
in some sense as a dynamical symmetry. This turns out to be the case.

Before continuing it is convenient to introduce some notations. Denote by V the subspace spanned by Ψs

corresponding to the zeros s of ζ inside the critical strip, by Vcrit the subspace corresponding to the zeros of ζ at
the critical strip, and by Vs the space spanned by the states Ψs and Ψ1−s. The basic idea behind the following
proposals is that the basic objects of study are the spaces V , Vcrit and Vs.

7.1 How to restrict the metric to V?
One should somehow restrict the metric defined in the space spanned by the states Ψs labeled by a continuous
complex eigenvalue s to the space V inside the critical strip spanned by a basis labeled by discrete eigenvalues. Very
naively, one could try to do this by simply putting all other components of the metric to zero so that the states
outside V correspond to gauge degrees of freedom. This is consistent with the interpretation of V as a coset space
formed by identifying states which differ from each other by the addition of a superposition of states which do not
correspond to zeros of ζ.

An more elegant manner to realize the restriction of the metric to V is to Fourier expand states in the basis
labeled by a complex number s and define the metric in V using double Fourier integral over the complex plane and
Dirac delta function restricting the labels of both states to the set of zeros inside the critical strip:

〈Ψ1)|Ψ2)〉 =

∫
dµ(s1)

∫
dµ(s2)Ψ

1)

s1
Ψ2)
s2
G(s2 + s1)δ(ζ(s1))δ(ζ(s2))

=
∑

ζ(s1)=0,ζ(s2)=0

Ψ
1)

s1
Ψ2)
s2
G(s2 + s1)

1√
det(s2)det(s1)

,

dµ(s) = dsds, det(s) =
∂(Re [ζ(s)] , Im [ζ(s)])

∂(Re [s] , Im [s])
. (7.1)

Here the integrations are over the critical strip. det(s) is the Jacobian for the map s→ ζ(s) at s. The appearance
of the determinants might be crucial for the absence of negative norm states. The result means that the metric GV
in V effectively reduces to a product
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GV = DGD,

D(si, sj) = D(si)δ(si, sj),

D(si, sj) = D(si)δ(si, sj)

D(s) =
1√
det(s)

. (7.2)

In the sequel the metric G will be called reduced metric whereas GV will be called the full metric. In fact, the
symmetry D(s) = D(s) holds true by the basic symmetries of ζ so that one has D = D and GV = DGD. This
means that Schwartz inequalities for the eigen states of D+ are not affected in the replacement of GV with G. The
two metrics can be in fact transformed to each other by a mere scaling of the eigen states and are in this sense
equivalent.

7.2 Riemann hypothesis from the hermicity of the metric in V
The mere requirement that the metric is hermitian in V implies the Riemann hypothesis. This can be seen in the
simplest manner as follows. Besides the zeros at the critical line Re[s] = 1/2 also the symmetrically related zeros
inside critical strip have positive norm squared but they do not have hermitian inner products with the states at the
critical line unless one assumes that the inner product vanishes. The assumption that the inner products between
the states at critical line and outside it vanish, implies additional zeros of ζ and, by repeating the argument again
and again, one can fill the entire critical interval (0, 1) with the zeros of ζ so that a reductio ad absurdum proof
for the Riemann hypothesis results. Thus the metric gives for the states corresponding to the zeros of the Riemann
Zeta at the critical line a special status as what might be called physical states.

It should be noticed that the states in Vs and Vs have non-hermitian inner products for Re[s] 6= 1/2 unless these
inner products vanish: for Re[s] > 1/2 this however implies that ζ has a zero for Re[s] > 1.

7.3 Riemann hypothesis from the requirement that the metric in V is positive definite

With a suitable choice of K(z12) the metric is positive definite between states having y1 6= y2. For s and 1− s one
has y1 = y2 implying K(z12) = 1 in Vs. Thus the positive definiteness of the metric in V reduces to that for the
induced metric in the spaces Vs. This requirement implies also Riemann hypothesis as following argument shows.

The explicit expression for the norm of a Re[s] = 1/2 state with respect to the full metric Gind
V reads as

Gind
V (1/2 + iyn, 1/2 + iyn) = D2(1/2 + iy)Gind(1/2 + iyn, 1/2 + iyn),

Gind(1/2 + iyn, 1/2 + iyn) = −K(z12)

π
sin(π)Γ(1)ζ(1). (7.3)

Here Gind is the metric in Vs induced from the reduced metric G. This expression involves formally a product of
vanishing and infinite factors and the value of expression must be defined as a limit by taking in Im[z12] to zero.
The requirement that the norm squared defined by Gind equals to one fixes the value of K(1):

K(1) = − π

sin(π)ζ(1)
= 1. (7.4)

The components Gind in Vs are given by

Gind(s, s) = −sin(2πRe[s])Γ(2Re[s])ζ(2Re[s])

π
,

Gind(1− s, 1− s) = −sin(2π(1−Re[s]))Γ(2− 2Re[s])ζ(2(1− [Re[s]))

π
,

Gind(s, 1− s) = Gind(1− s, s) = 1. (7.5)

The determinant of the metric Gind
V induced from the full metric reduces to the product

Det(Gind
V ) = D2(s))D2(1− s)×Det(Gind). (7.6)

Since the first factor is positive definite, it suffices to study the determinant of Gind. At the limit Re[s] = 1/2 Gind

formally reduces to (
1 1
1 1

)
.

This reflects the fact that the states Ψs and Ψ1−s are identical. The actual metric is of course positive definite. For
Re[s] = 0 the Gind is of the form (

−1 1
1 0

)
.
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The determinant of Gind is negative so that the eigenvalues of both the full metric and reduced metric are of opposite
sign. The eigenvalues for Gind are given by (−1±

√
5)/2.

The determinant of Gind in Vs as a function of Re[s] is symmetric with respect to Re[s] = 1/2, equals to −1 at the
end points Re[s] = 0 and Re[s] = 1, and vanishes at Re[s] = 1/2. Numerical calculation shows that the sign of the
determinant of Gind inside the interval (0, 1) is negative for Re[s] 6= 1/2. Thus the diagonalized form of the induced
metric has the signature (1,−1) except at the limit Re[s] = 1/2, when the signature formally reduces to (1, 0).
Thus Riemann hypothesis follows if one can show that the metric induced to Vs does not allow physical states with
a negative norm squared. This requirement is physically very natural. In fact, when the factor K(z12) represents
sufficiently rapidly vanishing Gaussian, this guarantees the metric to Vcrit has only non-negative eigenvalues. Hence
the positive-definiteness of the metric, natural if there is real quantum system behind the model, implies Riemann
hypothesis.

7.4 Riemann hypothesis and conformal invariance

The basic strategy for proving Riemann hypothesis has been based on the attempt to reduce Riemann hypothesis
to invariance under conformal algebra or some subalgebra of the conformal algebra in V or Vs. That this kind of
algebra should act as a gauge symmetry associated with ζ is very natural idea since conformal invariance is in a
well-defined sense the basic symmetry group of complex analysis.

Consider now one particular strategy based on conformal invariance in the space of the eigen states of D+.
1. Realization of conformal algebra as a spectrum generating algebra
The conformal generators are realized as operators

Lz = tzD+ (7.7)

act in the eigen space of D+ and obey the standard conformal algebra without central extension [7]. D+ itself
corresponds to the conformal generator L0 acting as a scaling. Conformal generators obviously act as dynamical
symmetries transforming eigen states of D+ to each other. What is new is that now conformal weights z have all
possible complex values unlike in the standard case in which only integer values are possible. The vacuum state Ψ0

having negative norm squared is annihilated by the conformal algebra so that the states orthogonal to it (non-trivial
zeros of ζ inside the critical strip) form naturally another subspace which should be conformally invariant in some
sense. Conformal algebra could act as gauge algebra and some subalgebra of the conformal algebra could act as a
dynamical symmetry.

2. Realization of conformal algebra as gauge symmetries
The definition of the metric in V involves in an essential manner the mapping s→ ζ(s). This suggests that one

should define the gauge action of the conformal algebra as

Ψs → Ψζ(s) → LzΨζ(s) = ζsΨζ(s)+z

→ ζsΨζ−1(ζ(s)+z). (7.8)

Clearly, the action involves a map of the conformal weight s to ζ(s), the action of the conformal algebra to ζ(s), and
the mapping of the transformed conformal weight z+ζ(s) back to the complex plane by the inverse of ζ. The inverse
image is in general non-unique but in case of V this does not matter since the action annihilates automatically all
states in V . Thus conformal algebra indeed acts as a gauge symmetry. This symmetry does not however force
Riemann hypothesis.

3. Realization of conformal algebra as dynamical symmetries
One can also study the action of the conformal algebra or its suitable sub-algebra in Vs as a dynamical (as

opposed to gauge) symmetry realized as

Ψs → LzΨs = sΨs+z. (7.9)

The states Ψs and Ψ1−s in Vs have non-vanishing norms and are obtained from each other by the conformal generators
L1−2Re[s] and L2Re[s]−1. For Re[s] 6= 1/2 the generators L1−2Re[s], L2Re[s]−1, and L0 generate SL(2, R) algebra which
is non-compact and generates infinite number of states from the states of Vs. At the critical line this algebra reduces
to the abelian algebra spanned by L0. The requirement that the algebra naturally associated with Vs is a dynamical
symmetry and thus generates only zeros of ζ leads to the conclusion that all points s + n(1 − 2Re[s]), n integer,
must be zeros of ζ. Clearly, Re[s] = 1/2 is the only possibility so that Riemann hypothesis follows. In this case the
dynamical symmetry indeed reduces to a gauge symmetry.

There is clearly a connection with the argument based on the requirement that the induced metric in Vs does
not possess negative eigenvalues. Since SL(2, R) algebra acts as the isometries of the induced metric for the zeros
having Re[s] 6= 1/2, the signature of the induced metric must be (1,−1).

4. Riemann hypothesis from the requirement that infinitesimal isometries exponentiate
One could even try to prove that the entire subalgebra of the conformal algebra spanned by the generators

with conformal weights n(1 − 2Re[s]) acts as a symmetry generating new zeros of ζ so that corresponding states
are annihilated by gauge conformal algebra. If this holds, Re[s] = 1/2 is the only possibility so that Riemann
hypothesis follows. In this case the dynamical conformal symmetry indeed reduces to a gauge symmetry.

Since L1−2Re[s] acts as an infinitesimal isometry leaving the matrix element 〈Ψ0|Ψs〉 = 0 invariant, one can in
spirit of Lie group theory argue that also the exponentiated transformations exp(tL1−2Re[s]) have the same property
for all values of t. The exponential action leaves Ψ0 invariant and generates from Ψs a superposition of states with
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conformal weights s + n(1 − 2Re[s]), which all must be orthogonal to Ψ0 since t is arbitrary. Since all zeros are
inside the critical strip, Re[s] = 1/2 is the only possibility.

A more explicit formulation of this idea is based on a first order differential equation for the integral representation
of ζ. One can write the matrix element of the metric using the analytical continuation of ζ(s):

G(s) = −2iΓ(s)ζ(s)sin(πs) = H(s, a)|a=0,

H(s, a) =

∫
C

dt

t

exp(−t+ a(−t)1−2x)
[1− exp(−t)]

(−t)x+iy−1. (7.10)

If s = x+ iy is zero of ζ then also 1−x+ iy is zero of ζ and its is trivial to see that this means the both H(x+ iy, a)
and its first derivative vanishes at a = 0:

H(s, a)|a=0 = 0,

d

da
H(s, a)|a=0 = 0. (7.11)

Suppose that H(s, a) satisfies a differential equation of form

d

da
H(x+ iy, a) = I(x,H(x+ iy, a)), (7.12)

where I(x,H) is some function having no explicit dependence on a so that the differential equation defines an
autonomous flow. If the initial conditions of Eq. 7.11 are satisfied, this differential equation implies that all
derivatives of H vanish which in turn, as it is easy to see, implies that the points s + m(1 − 2x) are zeros of ζ.
This leaves only the possibility x = 1/2 so that Riemann hypothesis is proven. If I is function of also a, that is
I = I(a, x,H), this argument breaks down.

The following argument shows that the system is autonomous. One can solve a as function a = a(x,H) from
the Taylor series of H with respect to a by using implicit function theorem, substitute this series to the Taylor
series of dH/da with respect to a, and by re-organizing the summation obtain a Taylor series with respect to H
with coefficients which depend only on x so that one has I = I(x,H).

5. Conclusions
To sum up, Riemann hypothesis follows from the requirement that the states in V can be assigned with a

conformally invariant physical quantum system. This condition reduces to three mutually equivalent conditions:
the metric induced to V is hermitian; positive definite; allows conformal symmetries as isometries. The hermiticity
and positive definiteness properties reduce to the requirement that the dynamical conformal algebra naturally
spanned by the states in Vs reduces to the abelian algebra defined by L0 = D+. If the infinitesimal isometries for
the matrix elements 〈Ψ0|Ψs〉 = 0 generated by L1−2Re[s] can be exponentiated to isometries as Lie group theory
based argument strongly suggests, then Riemann hypothesis follows.

References
[1] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monat. der Königl. Preuss. Akad.

der Wissen. zu Berlin aus der Jahre 1859 (1860), 671-680; also , Gesammelte mat. Werke und wissenshc.
Nachlass, 2. Aufl. 1892, 145-155.

[2] H. M. Edwards (1974), Riemann’s Zeta Function, Academic Press, New York, London.

[3] Brief description of Riemann hypothesis can be found at
http://www.utm.edu/research/primes/notes/rh.html.

[4] Links to modern literature about Riemann hypothesis can be found at
http://match.stanford.edu/rh/.

[5] M. V. Berry and J. P. Keating (1999), "H=xp and the Riemann Zeros." In Super-symmetry and Trace Formulae:
Chaos and Disorder (Ed. I. V. Lerner, J. P. Keating, and D. E. Khmelnitskii). New York: Kluwer, pp. 355-367.
http://www.treasure-troves.com/math/BerryConjecture.html.

[6] C. Iztykson and J-B. Zuber (1980),"Quantum Field Theory", 549, New York: Mc Graw- Hill Inc.

[7] C. Itzykson, H. Saleur,J-B. Zuber (Editors)(1988):Conformal Invariance and Applications to Statistical Me-
chanics, Word Scientific.

[8] M. Pitkänen (2002), A Strategy for Proving Riemann Hypothesis, matharXiv.org/0111262.

[9] M. Pitkänen (2003), A Strategy for Proving Riemann Hypothesis, Acta Math. Univ. Comeniae, vol. 72.

[10] M. Pitkänen (2006), Topological Geometrodynamics: Overview.
http://tgd.wippiespace.com/public_html/tgdview/tgdview.html.

[11] E. C. Titchmarch (1986), The Theory of Riemann Zeta Function, 2nd ed. revised by R. D. Heath-Brown,
Oxford Univ. Press.

[12] I. Vardi, An Introduction to Analytic Number Theory,
http://algo.inria.fr/banderier/Seminar/Vardi/index.htm.

ISSN

Prespacetime Journal
Published by QuantumDream, Inc.

www.prespacetime.com

http://www.utm.edu/research/primes/notes/rh.html
http://match.stanford.edu/rh/
http://www.treasure-troves.com/math/BerryConjecture.html
http://tgd.wippiespace.com/public_html/tgdview/tgdview.html
http://algo.inria.fr/banderier/Seminar/Vardi/index.htm

	Introduction
	Modified form of the Hilbert-Polya conjecture
	Formal solution of the eigenvalue equation for operator D+
	D+=D condition and hermitian form
	How to choose the function F?
	Study of the hermiticity condition
	Various assumptions implying Riemann hypothesis
	How to restrict the metric to V?
	Riemann hypothesis from the hermicity of the metric in V
	Riemann hypothesis from the requirement that the metric in V is positive definite
	Riemann hypothesis and conformal invariance


